

Coding Places

Acting with Technology
Bonnie Nardi, Victor Kaptelinin, and Kirsten Foot, editors

Tracing Genres through Organizations: A Sociocultural Approach to Information Design,

Clay Spinuzzi, 2003

Activity-Centered Design: An Ecological Approach to Designing Smart Tools and Usable

Systems, Geri Gay and Helene Hembrooke, 2004

The Semiotic Engineering of Human Computer Interaction, Clarisse Sieckenius de Souza,

2005

Group Cognition: Computer Support for Building Collaborative Knowledge, Gerry Stahl,

2006

Acting with Technology: Activity Theory and Interaction Design, Victor Kaptelinin and

Bonnie A. Nardi, 2006

Web Campaigning, Kirsten A. Foot and Steven M. Schneider, 2006

Scientific Collaboration on the Internet, Gary M. Olson, Ann Zimmerman, and Nathan

Bos, editors, 2008

Acting with Technology: Activity Theory and Interaction Design, Victor Kaptelinin and

Bonnie A. Nardi, 2009

Digitally-Enabled Social Change: Online and Offline Activism in the Age of the Internet,

Jennifer Earl and Katrina Kimport, 2011

Invisible Users: Youth in the Internet Cafés of Urban Ghana, Jenna Burrell, 2012

Venture Labor: Work and the Burden of Risk in Innovative Industries, Gina Neff, 2012

Car Crashes without Cars: Simulation Technology and Organizational Change in Automo-

tive Engineering, Paul M. Leonardi, 2012

Coding Places: Software Practice in a South American City, Yuri Takhteyev, 2012

Coding Places

Software Practice in a South American City

Yuri Takhteyev

The MIT Press

Cambridge, Massachusetts

London, England

© 2012 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any

electronic or mechanical means (including photocopying, recording, or information

storage and retrieval) without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales

promotional use. For information, please email special_sales@mitpress.mit.edu or

write to Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge,

MA 02142.

This book was set in Stone Sans and Stone Serif by the MIT Press. Printed and bound

in the United States of America.

Library of Congress Cataloging-in-Publication Data

Takhteyev, Yuri, 1976–

Coding places : software practice in a South American city / Yuri Takhteyev.

p. cm. — (Acting with technology)

Includes bibliographical references and index.

ISBN 978-0-262-01807-4 (hardcover : alk. paper)

1. Computer software—Development—Brazil. 2. Lua (Computer program language)

3. Computer programming—Brazil. 4. Globalization. I. Title.

QA76.76.D47T345 2012

005.100981—dc23

2012007128

10 9 8 7 6 5 4 3 2 1

To the memory of Vladimir Takhteyev (1953–2011)
and to Dimitri (b. 2012)

Acknowledgments ix

A Note on Translation, Quoting, and Pseudonyms xiii

0 The Wrong Place 1

1 Global Worlds of Practice 21

2 The Global Tongue 47

3 Nerds from the Baixada and Other Places 71

4 Software Brasileiro 93

5 Downtown Professionals 115

6 Porting Lua 135

7 Fast and Patriotic 159

8 Dreams of a Culture Farmer 179

9 Conclusion 205

Notes 217

References 231

Index 241

Contents

Acknowledgments

This book could not have happened without the many people who have in
various forms provided support, guidance, and inspiration.

The book is based primarily on research done while pursuing a doc-
toral program at the School of Information at the University of California,
Berkeley, and I am highly grateful to my many mentors there. From among
those, Paul Duguid’s role stands out especially. Paul’s Social Life of Informa-
tion introduced me to many of the questions that I explore in this book
even before I formulated my graduate school plans. Paul’s arrival at the
School of Information in 2004 was a true blessing. I feel especially thankful
to Paul for his willingness to not just share his insights and knowledge, but
also to invest so much time in half-incoherent drafts, helping me formu-
late my thoughts. I am also thankful to Peter Lyman, under whose supervi-
sion I started my program at Berkeley. I am grateful to Peter for convincing
me to come to Berkeley, for introducing me to ethnography and social
theory, and for securing funding for my research. He is and will be greatly
missed.

I am also tremendously indebted to other mentors who have inspired
me with their own work and have put much time into helping me improve
mine. Anno Saxenian’s work on transnational connections set an example
for me from my early days at Berkeley and encouraged me to do inter-
national research. Anno’s advice over the years has also been invaluable.
Peter Evans’s work introduced me to the history of Brazilian IT policy, and
his continuous insistence on hearing “the point” of my work helped me
sharpen my arguments. I also want to thank Coye Cheshire, Jean Lave,
Suzanne Scotchmer, Michael Buckland, Nancy Van House, Ray Larson, Ted
Egan, and Raka Ray for introducing me to many new ideas and providing
suggestions for my work.

Fellow students at Berkeley were also a source of inspiration and ideas.
The diversity of their interests introduced me to a variety of ways of

x Acknowledgments

thinking about information technology, compensating for the narrow spe-
cialization inherent in a doctoral program. Jens Grossklags, Paul Laskowski,
Joseph Hall, danah boyd, and Mahad Ibrahim helped me stay on track; they
were a great cohort. I thank Dan Perkel, Megan Finn, Ryan Shaw, Christo
Sims, Rajesh Veeraraghavan, and Bob Bell for attending numerous practice
talks, providing suggestions, and being a great group to be around. Aaron
Shaw and Michael Donovan, who were themselves working on Brazil, were
a great source of insights about that country.

Over one hundred people have generously volunteered their time to tell
me about their lives and work. This book would not be possible without
their courage to share their stories with a stranger. Many of those people
also helped me feel at home in a new city. Some have become friends. Many
of my interviewees have volunteered to read chapters of this book, finding
factual errors, misinterpretations, inconsistencies, and often simply gram-
matical mistakes. I am particularly grateful to “Rodrigo” for his willingness
to talk openly about the many challenges facing his project, for introduc-
ing me to many of the people on whose stories this book relies, and for
tolerating my straddling of fieldwork and friendship. I thank Roberto Ieru-
salimschy and Luiz Henrique Figueiredo for our discussions about the past,
present, and future of Lua, for their comments on drafts, as well as for their
willingness to stand aside and let me present the story as I saw it. I thank
the members of the Kepler team and Alta’s developers and managers for
tolerating a resident ethnographer in their midst.

Analysis of the interviews would be much harder without access to tran-
scription. I thank Siobhan Hayes, Eva do Rego Barros, Rosa Paiva, Eliodora
Besser, Patricia Martinez Alzueta, and Mariana Timponi for their work. I
thank Marcelo Besser and LoGoS Traduções e Consultoria for organizing
the process.

Conversations with Brazilian scholars have helped me better understand
the local context and Brazil’s history. I am particularly thankful to Paulo
Tigre, Ivan da Costa Marques, Sidney Oliveira de Castro, Henrique Cukier-
man, Antonio Botelho, Nelson Senra, and Simon Schwartzman. I thank the
Institute of Economics of Universidade Federal do Rio de Janeiro for hosting
me in 2005.

After finishing my dissertation in May 2009, I moved to University of
Toronto, where I benefited from support of colleagues and students. I am
particularly thankful to Anthony Wensley for his efforts to bring me to
Toronto and for allowing me to dedicate time to research. I thank Matt
Ratto for helping me orient myself around the Faculty of Information and
for his advice on publication strategies. I would also like to thank Brian

Acknowledgments xi

Cantwell Smith, Jun Luo, and ginger coons for thoughtful comments on
drafts, and Annie Shi for her assistance in copyediting.

The book benefited substantially from the attention of the series editors,
Bonnie Nardi, Kirsten Foot, and Victor Kaptelinin. They have supported
this work in its transition from a dissertation to a book and suggested many
of the needed revisions. I thank the anonymous reviewers of the manu-
script who read the book with a great attention and provided valuable com-
ments. I thank Kathleen Caruso at the MIT Press for her thoughtful edits
and other MIT Press staff for their work on this book.

Luisa Farah Schwartzman has seen more revisions of this manuscript than
anyone else (with the possible exception of Paul Duguid). She has helped
me reduce the amount of technical jargon in my writing and increase the
number of definite articles. Having a native speaker of Portuguese around
and ready to help decipher the most enigmatic passages in my recordings
undoubtedly qualifies as an unfair advantage. As two scholars working side-
by-side, we have gradually found more and more intersections in our bib-
liography and have often jokingly argued about who stole whose ideas. I
may never be able to fully appreciate Luisa’s impact on my work.

I thank my family for their support over the years. My parents have
helped lay the foundation for my own globalization projects. My father’s
global dreams and his ability to imagine his children’s future education
abroad even before the fall of the Berlin Wall have helped bring me from
Vladivostok to California. He introduced me to my first computer, and I
often remember our long conversations about the nature of information
nearly two decades ago. My mother has contributed greatly to my interna-
tional adventure by helping me develop a passion for foreign languages.

This book is based on work supported by the National Science Foun-
dation under Grant No. SES-0724707, by the Berkeley Fellowship, and by
Yahoo! Research Key Technical Challenges Grant.

A Note on Translation, Quoting, and Pseudonyms

Most of the quotations included in this book are my translations from Por-
tuguese. Readers interested in seeing those quotations in the original Por-
tuguese can find them on the book’s web site at http://codingplaces.net/,
which also describes my approach to transcription, quoting, and transla-
tion. My interviews with the two authors of Lua were conducted in English,
while my conversations with “Rodrigo Miranda” often alternated between
the two languages. (The companion site identifies the original language of
each quotation.)

The book uses two methods to present direct speech to account for the
variation in precision with which the speech was captured. I use quotation
marks or block quotes for speech that is reproduced verbatim with high
confidence. This includes quotations from audio-recorded interviews and
electronic communication (email or instant messenger), as well as phrases
recorded verbatim in my notes. I use direct speech without quotation marks
for utterances that actually occurred and closely match what was said, but
may not be reproduced verbatim. In some cases, I put such utterances in
italic to set them off from the rest of the paragraph.

I sometimes use simple ellipsis (“. . .”) to indicate disfluencies in the orig-
inal speech, for example, unfinished sentences, short pauses, or breaks in
sentence structure. I always use bracketed ellipsis (“[. . .]”) in places where a
part of the quotation is omitted. Additional details on the quoting method
are available on the companion site.

I use pseudonyms to identify the participants in most cases. (The authors
of Lua are the main exception.) I also use pseudonyms for names of several
companies and software products. Each pseudonym is shown in quotation
marks the first time I use it but appears without quotation marks if it is used
again later.

0 The Wrong Place

Why would you come from California to Rio de Janeiro to study software devel-
opers? The question was asked in a friendly tone, with just a touch of sus-
picion. It would not send blood rushing through my veins if not for the
place where it was asked. I was stooping in front of a small window, in the
midst of explaining to a US consular officer why a Russian citizen born in
Vladivostok would be seeking an American visa in Rio de Janeiro, at nearly
the exact opposite side of the world from where I was supposed to be apply-
ing for it. I was in the wrong place, and a good explanation was due, lest
my personal world should suddenly become far from flat. Saying that I had
come to Brazil to study software developers was a sure way to raise eyebrows
further.1

I will try to show in this book that we have much to gain from looking
at software development in this somewhat unlikely place, and more gener-
ally, from looking at high-tech work in “wrong” places. By doing so, we can
learn a lot about place and its persisting importance in today’s “knowledge
economy.” For over a decade, popular authors have declared that place will
soon become unimportant for human activities, as people increasingly gain
the ability to communicate and collaborate over distance (Cairncross 1997;
Friedman 2006). In the age of the Internet, they have argued, where you
are does not matter. Others have countered such claims, pointing out that
the world might actually be becoming more “spiky,” with a small number
of places growing in importance as centers of global activities (Florida 2008).
Picking the city to live and work in, they say, may be your life’s most impor-
tant decision. If you are in the wrong place, pack your bags quickly and
move! And some people do exactly that. For decades, places like Silicon Val-
ley have attracted (and continue to attract) people from all over the world.
Eighteen years ago, I myself left a provincial Russian city for Palo Alto. Most
people stay close to where they were born, however. This book is about
those people, the work they do, and their role in globalization.

2 Chapter 0

My story and analysis challenge both views outlined earlier. I argue that
we should neither declare “the death of distance” nor fix our gaze on a
handful of “spikes.” Instead, we must look at globalization as an active
process arising from the combined efforts of many people around the world
working daily to defy space, building individual connections to remote
places in pursuit of global dreams. To understand globalization we must
look closely at such people: at their goals, their struggles, their failures,
and their successes. We must pay attention to how their efforts reduce or
increase differences between places. And we must look in the wrong places.

Practice and Place

The book looks at people who inhabit simultaneously two different con-
texts. One of those contexts is defined geographically—a metropolitan area
in southeastern Brazil, consisting of the city of Rio de Janeiro that is home to
around six million people known as Cariocas, and the adjacent municipali-
ties inhabited by an equal number of Fluminenses, many of whom commute
to Rio de Janeiro for work. The other context is an instance of what I call
worlds of practice—systems of activities comprised of people, ideas, and mate-
rial objects, linked simultaneously by shared meanings and joint projects.
Such worlds vary in scale, but many of them are global, connecting people
and objects spread around the planet. The world of software development is
global in this sense, inhabited by around ten million people who are spread
far and wide. I argue in this book that global worlds of practice are the
key constitutive elements of globalization. In other words, to understand
globalization we must look at not just the technologies that enable global
communication, nor the structures of global governance. Rather, we must
investigate the global “worlds” that form around specific systems of human
activity, noting how globalization projects occurring within such systems
reinforce each other and produce the overall experience of globalization.

The world of software development makes an interesting context for
a study of globalization because it exemplifies its paradoxes like no other
field. Software development is often seen as a quintessential example of
“knowledge work,” a global profession, freed from the constraints of geog-
raphy by the immaterial nature of its inputs and outputs. Whereas tradi-
tional industries convert material inputs into material outputs, and moving
those inputs and outputs costs money, “knowledge work” focuses on trans-
forming “knowledge,” an entity that can be easily imagined as perfectly
mobile—at least as long as our idea of “knowledge” is modeled largely on
computer files. And while this crucial resource could in theory be hoarded

The Wrong Place 3

by a privileged few, in practice it is often seemingly rendered free for all
by the collective generosity of “communities of geeks,” which Friedman
(2006) sees as an example of a broader “uploading” of knowledge.

Given the abundance of uploaded knowledge, engaging in software
production seemingly requires little more than a computer, stable electric-
ity, and Internet access—all of which are available in places like Rio de
Janeiro even to the relatively poor. Armed with those tools, developers can
access vast repositories of code and documentation from across the globe.
Brazilian developers sometimes spare no words when describing the sig-
nificance of the Internet to their work. They speak of it as “the world’s
greatest library,” full of “all the imaginable and unimaginable resources.”
Developers can use code and documentation found on the Internet to build
their own solutions. They can then distribute the products of their labor to
people around the world, again using the Internet. Occasionally we read
news stories that seem to illustrate the ease of this scenario. For example,
in 2009 a seventeen-year-old Moscow high school student built Chatrou-
lette—a video chat system that soon had over a million users from around
the globe and was discussed in the news all over the planet.

Such stories, however, must not distract us from another notable feature
of the world of software: its stark and persistent centralization. Over the
last several decades, the world of software has revolved around a handful
of places. One of those places—Silicon Valley—has in fact become a text-
book example for illustrating the idea of regional clustering of industry. In
addition to being home to a large number of software practitioners, Silicon
Valley and the greater San Francisco Bay Area also serve as a base for some
of the world’s largest and most successful IT companies that control the
work of developers around the world. Together, market capitalization of IT
companies headquartered around San Francisco comprises over a third of
the world’s total (see chapter 4).

This concentration of valuation is indicative of the difference in the kind
of software work that gets done in different places and the geography of
control over software work. Many of the developers working in San Fran-
cisco and in some of the other centers of the software world apply their
efforts to software intended for broad use, which would, if successful, bring
their companies big rewards. Such rewards can be both financial and sym-
bolic: the successes of Oracles, Apples, and Googles make up a good part of
the global software lore. Software developers working outside such major
clusters recognize the preeminence of remote centers. Stories such as those
of Chatroulette often have a little-noted ending: the developers moving to
San Francisco Bay Area or selling their venture to a company based there.

4 Chapter 0

The practice of software development thus appears to be simultane-
ously remarkably placeless and starkly placed. This paradox can perhaps
be grasped most clearly by considering the case of Google, the company
whose search engine is often mentioned as the greatest “leveler” by Brazil-
ian programmers, but which itself arose—and most likely could only have
arisen—in a highly predictable place, biking distance to Silicon Valley’s
Sand Hill Road.

By most counts, Rio de Janeiro is a peripheral place in the world of soft-
ware. In terms of sheer numbers, Rio de Janeiro likely has about one-tenth
the number of programmers of the San Francisco Bay Area; in terms of IT
valuation, the difference between the two regions likely approaches a fac-
tor of one thousand (see chapter 4). Developers who work in Rio usually
dedicate their efforts to the smaller problems faced by local organizations.
The most successful address the needs of Brazil’s national market (though
many usually find that such work is better done elsewhere, in the larger São
Paulo). “This is not Silicon Valley,” Rio developers often explain when talk-
ing about the possibility of taking on more ambitious projects.

Yet it is precisely this peripheral position in the remarkably centralized
world of software development that makes Rio an interesting place for
looking at knowledge work. After all, while the software developers work-
ing in Rio are fewer than those in Silicon Valley, the overwhelming major-
ity of people who write software do so in places that are more similar to
Rio than to Silicon Valley.2 To understand the truly exceptional position of
centers such as Silicon Valley, perhaps it helps to spend some time contem-
plating the periphery. What do software developers do in such places? Why
do they do it? Answering such questions will help us better understand the
nature of ties that bind together the world of software and today’s global
society.

To make sense of the paradox between software’s seeming independence
from geography and the centralization of its production, we could try to
understand why software development remains so concentrated in the
era of unrestricted knowledge flows—a popular road that seems to almost
inevitably lead one to ask what is wrong with all the places that fail to pro-
duce a thriving software industry. I touch upon this question at several
points in this book. For most of it, however, I take a different approach.
Instead of assuming that technical knowledge is naturally fluid and trying
to understand what barriers keep software development so concentrated,
I take the concentration as a given and seek to understand how the prac-
tice of software development moves in space at all, investigating the work
that is needed to establish this practice in new places. How the seeming

The Wrong Place 5

universality is achieved in spite of this geographic concentration then
becomes one of the key questions.

In doing so, I put aside the term “knowledge” for the sake of another
one: “practice.” To understand how knowledge comes to new places, we
must look at it in conjunction with all other things that must be in place to
support its power—the social arrangements that provide the “tracks” along
which technical knowledge can travel (Latour 1987). While this expansion
of scope could be done by arguing for a broader notion of “knowledge,” I
switch to a different term partly to draw on the rich body of social theory
from which I borrow the concept of “practice,” and in part because I feel
that the tendency to think of “knowledge” as something akin to the con-
tent of computer files is so strong today that I cannot expect the reader to
ever fully leave behind this unfortunate metaphor.

The concept of “practice” provides us with a useful analytic layer between
the more abstract, propositional notions of knowledge and the messy details
of daily life. As I explain in more detail in the next chapter, I understand
“practice” as a system of activities, a collective way of doing certain things,
or a system of “doings and sayings” (Schatzki 1996). A practice maintains
continuity through a mutually sustaining relationship between patterns of
interactions, material resources, and shared systems of meaning. Looking
at the practice of software development, I thus look at the doing of software
development, the people and groups that engage in this doing, and the rela-
tionships between them. I also look at how such doing interacts on the one
hand with ideas and discourse, and on the other hand with the material ele-
ments of the practice. This nexus of relations creates a context for individual
actions, a context that individuals can “inhabit” in ways that can be likened
to how they inhabit physical places, and to which they can have commit-
ments—commitments that must be balanced with those to the local place
and the national community. Such contexts are bounded and often named.
The developers sometimes talk about being in “the world of software.” For
this reason, I describe such systems of activities as worlds of practice.3

Focusing on activities, and especially on systems of activities, makes it
easy to see why the practice of software development would cluster in a
handful of places, since it helps us recognize the many different pieces that
would need to be put together to re-create the practice in a new place. For
someone who adopts this perspective, the problem becomes that of com-
prehending how a living practice could ever move to new places. To put
the same question differently, we can ask how “uploaded” knowledge and
other elements of the practice, removed from their original context, are put
together and made to work in a new place.

6 Chapter 0

My discussion of practice in place focuses on several themes. The first is
the process of disembedding and reembedding (Giddens 1991) involved in its
reproduction across space: people engaged in a practice that is based some-
where else often have to reassemble the practice around imported elements,
substituting for missing pieces what happens to be available. (And if they
want to get involved more centrally, i.e., extending the practice, they will
have to find ways to thoroughly disembed their own innovations, to make
them mobile and useful in the remote places where the practice is stron-
gest.) The second theme is the cumulative and parallel nature of the reproduc-
tion process. I look at the local practice of Brazilian software developers as a
partial reproduction of the American software practice and frame my obser-
vations as a particular moment in the history of this practice—a moment
when many elements have already been brought in and reassembled (hence
the need to look at history in chapter 4), while others are still missing. I also
look at this reproduction as one of many parallel efforts to re-create foreign
practices. Third is the theme of a “diasporic” situation of the peripheral prac-
titioners, who engage simultaneously in two cultures: the local mainstream
culture and the globalizing world of the practice. (Those engaged with the
practice at its centers may face this issue as well, but the gap between the
two worlds is usually not as wide.) In particular, I look at how commitments
to those two cultures come in conflict and how such conflicts are nego-
tiated. Closely related to this is the complex relation between individual and
collective efforts of reproducing foreign practice: local practitioners must often
decide whether to cast their lot with their local colleagues or focus on their
individual connections to remote centers. The fourth theme is the interaction
between the cultural and economic layers of the practice, and the need to look
at the two simultaneously, considering the situations when one of those
layers is present and the other is missing. Finally, I stress the importance of
paying attention to actors’ reflexive understanding of the world, the possible
futures they can imagine individually and collectively, and the factors that
influence this imagination (Giddens 1979; Appadurai 1996). Together those
themes provide us with a view of globalization that highlights individual
agency of peripheral actors, situating their actions in the context of cultural
and economic structures, while also showing how their individual attempts
to engage in global systems of activities add up, collectively and over time,
to create the seeming universality of global practice.

By bringing to light the work that peripheral practitioners must do to
give software development its seeming universality, I hope to offer them
the credit they deserve (and all too often deny themselves), touching upon
the question of why software development remains centralized. While I do

The Wrong Place 7

not see this centralization as a puzzle per se, I do believe that there are many
explanations that are wrong and self-serving, and that such explanations
may themselves contribute to the persistence of centralization. The dis-
cussions of the geography of software work (or other types of “knowledge
work”) and the feasibility of developing “the next Silicon Valley” in this or
that place quite often arrive at the importance of attracting “smart people”
(e.g., Graham 2006). While smart people are undoubtedly important for a
successful software industry (as for many other types of work), researchers
and policy makers sometimes seem too quick to assume that places that
lack strong software industry lack smart people. In fact, if one assumes that
technological knowledge flows naturally between capable minds and is suf-
ficient for the re-creation of a knowledge industry, then the concentration
of software development in a handful of places would seem to imply that
other places lack smart people, smart governments, smart investors, or all
of the above. Unfortunately, such judgments are often internalized by the
peripheral actors themselves, who might sometimes consider themselves
an exception to the rule, but too often assume that the mediocrity of their
fellow citizens limits what they can achieve. Highlighting the work that
went into bringing about the current state of affairs, and the achievement
inherent in that, I hope will present a brighter picture and in turn facilitate
local cohesion.

I also intend to show how such peripheral work contributes to the con-
tinued dominance of remote centers. Like many other knowledge products,
software production is characterized by strong network effects: software that
is used becomes more useful and will often gain in popularity because of its
popularity. This is often especially true for open source software (which I
discuss in the next section), where products that are widely used often actu-
ally become better as they attract more contributions. By fixing their gaze
solidly on foreign technology and investing efforts into making it work
locally, peripheral developers often deny to local projects the attention that
such projects may need. Such lack of attention and, more important, lack
of trust in local projects is ironically the opposite of what has been credited
for making Silicon Valley the success that it is—the strong networks of per-
sonal relations and personal trust (e.g., Saxenian 1996). Unlike in the San
Francisco Bay Area, in Rio being local carries a stigma and the local place
works against the practitioners. The local developers are thus themselves
involved in replicating the asymmetries from which they suffer.

Such observations should not be interpreted as suggesting that periph-
eral participants and regulators should either turn away from foreign tech-
nology or desist altogether in light of the challenges. As Brazil has learned

8 Chapter 0

in the past, isolationism can be a dangerous strategy and nuanced solutions
are needed. I do not make specific policy recommendations, but I invite
policy makers to follow me on a visit to a world that they govern (in part)
but do not always understand, to see the challenges faced by people who
inhabit this world and to consider how helping them face those challenges
may contribute to the larger developmental agenda. I hope in particular
that the case of Kepler, an open source software project described in chapter
8, read together with the two alternatives to the approach Kepler exempli-
fies (chapters 5–7), will be useful for thinking about innovation policy.

Peculiarities

Understanding the way a universal practice is made to work in a concrete
place requires looking at the many peculiarities of that place: the specific
configurations of resources that are available to the actors who inhabit that
place and the specific history that has led to those configurations. It is for
this reason that I focus on a single city and present it as something con-
crete, rather than sampling software developers from a wide range of places
and losing the concreteness. While looking at one specific place, however, I
seek to show relations I believe exemplify the patterns we can find in many
other places. Every place has a history and every place has a local context.
In every place concrete work must be done to turn abstract knowledge into
a living practice.

While I believe the patterns I explore in this book could have been
shown using many other cities, the choice of the specific place can make
a difference. Different degrees of peripherality would bring into focus dif-
ferent parts of the reproduction process. Focusing on a place where the
practice of software development has yet to take root would help us see
the earliest steps in this process, but would shorten the history available
to exploration, leaving us to imagine all sorts of possible scenarios for the
future. Picking a place that is secondary today but could have become the
main center of information technology had the history of the twentieth
century gone just a little differently (e.g., Cambridge or Berlin) would high-
light the importance of contingencies, but would give us little insight into
the future possibilities. I believe that my choice of place gives us a good
balance: a city present on the world map, yet not quite one of the “global
cities”; in a developing country that seems to be gaining momentum, yet
doing so at a pace that allows for some reflection; and with a history of IT
policy that goes back a few decades—putting some of the most important
events in this history far enough back to allow for critical analysis.

The Wrong Place 9

In addition to the peculiarities of Rio de Janeiro, two other aspects of the
book may strike the readers as unusual and thus call for a brief introduction.

Free / Open Source Software
The book focuses disproportionately on a specific form of software practice
known as “open source” or “free” software development. Although those
two terms vary substantially in connotation, both refer to software that is
distributed in a manner that allows the recipient to modify it, and then
redistribute it to others without paying royalties to the original author.
While such distribution of software has been common since the earliest
days of software, it has come to particular prominence since the develop-
ment of Linux, an open source operating system, in the 1990s.4 In recent
years, the development of free / open source software has attracted substan-
tial attention from social scientists, including sociologists and anthropolo-
gists who have often looked at it as a political and cultural movement (e.g.,
Kelty 2008) and economists who have looked at efficiency gains associated
with this form of software production. In this book, I look at cases of open
source software development through the lens of practice, highlighting the
interrelations between culture and material production, and positioning
open source within the context of the global world of software practice.

Open source software development presents in perhaps the clearest form
the paradox between placelessness and centralization described earlier.
Open source communities are intentionally open, and the apparent gener-
osity of those “communities of geeks” provides much of the motivation for
Friedman’s discussion of “uploading” as one of the key factors contributing
to the “flattening” of the world. Such communities are also remarkably
dispersed and rely predominantly on computer-mediated interaction, with
members often having little idea where on the planet other participants
happen to be. At the same time, however, the geographic concentration of
those communities rivals that of the software industry, with rare projects
that originate in “wrong places” often quickly moving their centers to the
West Coast of the United States. The global culture of such communities is
based largely on the “hacking” culture that originally developed in Ameri-
can universities.5 Their practices are today supported by business models
pioneered by American companies and optimized for the situations they
face. English is almost always the working language of such communities,
even as they might strive to create software products that support every
last script on the planet. As I will try to show, participation in open source
projects involves a complex negotiation of culture, language, and geogra-
phy, and is often harder than engaging in other forms of software practice,

10 Chapter 0

since it requires more fluency in foreign culture and demands more of the
resources that may be hard to find in places like Rio de Janeiro.

Open source development contributes to globalizing the practice of
software development. It is important, however, to avoid trivializing this
relationship and to consider the local work that mediates it. Open source
development creates a new opportunity—and a challenge—to participate
in projects based far away. To take this opportunity and respond to this
challenge, however, Rio developers must learn quite a bit more about for-
eign practices and find more of the missing pieces of the practice.

On a more abstract level, open source development also simply repre-
sents a new way of developing software, and thus highlights the challenge
of keeping up with the evolving practice based far away—what we could
call “synchronization work.” Looking at how Rio developers respond to
this challenge may therefore help us understand how people engaged in
other worlds of practice respond to changes that take place in those worlds.

Lua
Several chapters of the book look closely at a particular open source project
that would be unusual by most measures: Lua, a programming language
developed in Rio de Janeiro that has recently gained substantial global pop-
ularity around the world—in particular, among software companies based
in California. For example, Lua was used extensively in World of Warcraft,
a networked computer game played by over ten million people (a num-
ber sufficiently high to secure an entry in the Guinness World Records),
and more recently in Angry Birds, a game that was downloaded over one
hundred million times in its first fifteen months. Lua has also been used
in products made by Google, Adobe, Microsoft, Verizon, Cisco, and other
technology companies.

Lua’s global success is surprising, not the least to those people in Rio
de Janeiro who are familiar with the scale of its use abroad. It is particu-
larly stunning when we consider the powerful network effects that ensure
that the number of programming languages in common use remains quite
small. Lua is the only entrant into this exclusive club from a developing
country.

Lua’s position in Brazil, however, presents us with an even larger puzzle.
Almost no local companies make use of Lua in their products. Lua’s large
and active community interacts primarily in English. Software developers
in Rio de Janeiro who wish to learn Lua can do so using a book written
by one of the authors of the language (a professor at a local university),
but they will need to read the book in English, because no Portuguese

The Wrong Place 11

translation of the book is available. Unless they know the author person-
ally, they will likely also need to order the book from Amazon.com and
have it shipped from the United States, since no Brazilian bookstores carry
it on their shelves. Lua’s global success has so far done little to rescue Rio
de Janeiro from its position as a “wrong place” for developing software.
Programming in Lua has just become another activity that is better done
in Silicon Valley.

I present Lua as a case of a particular strategy of engagement with global
technology: a focus on global connections, in the name of which local link-
ages may have to be sacrificed. I show the reasons for such disengagement
from the local context, as well as some of the efforts to reconnect Lua to
Rio. I discuss the strengths and weaknesses of this approach, presenting a
range of perspectives on Lua’s past, present, and future. I contrast this case
with two others: the localization of global technology by a successful IT
firm in Rio (chapter 5) and an attempt to bridge the gap undertaken by a
government-funded open source project aiming to make use of Lua locally
(chapter 8).

The Project

This book is based on an ethnographic project—an attempt to understand
the experience of a group of people through an extended engagement with
them. In my case, this meant a combination of over one hundred inter-
views, extended presence in places where software work was being done,
and at times active engagement in the members’ projects.6 As Van Maanen
(1988) points out, ethnographers use different approaches to present their
observations. Some tell “realist tales”: accounts that simply present what
happened, taking as given the ethnographer’s ability to know and to inter-
pret it. Others tell “confessional tales”: accounts that focus on the observer
as much if not more than they do on the observed. They normally do so out
of the realization that the observer inevitably influences what is observed,
and that the process of observation and interpretation is often fragile and
its success is contingent on many factors. The inclusion of the observer
in the account helps the readers better understand what was observed by
being told who did the observing and how. It also helps the ethnographers
consider their own biases, as it encourages them to think more closely (and
explain to their readers) about their own role in the events.7 (It also, as Van
Maanen points out, helps establish the ethnographers’ authority by show-
ing that they have gone to places where the readers have not been.) Though
I include myself in the account whenever appropriate, I avoid the extremes

12 Chapter 0

of confessional ethnography, finding it potentially distracting from the
larger points that I want to make. In particular, the order of the chapters
reflects the theoretical logic of the book rather than the chronology of my
fieldwork. To compensate, I present a brief “confession” in this section.

In the summer of 2003, after spending three years working as a software
developer in Mountain View, California, the heartland of the region known
worldwide as “Silicon Valley” (but referred to locally as just “South Bay”
or “the peninsula”) and before starting my PhD program at Berkeley, forty
minutes away by car, I spent a month in my hometown in Vladivostok,
Russia, on the other side of the Pacific. (As I learned a few years later, this
city is known to many Brazilians primarily as a base for attacking Alaska in
War, a board game based on the American Risk.) While there, reconnecting
with old friends and meeting new people, I saw a world that I had started to
forget during my years in California. I was in a place that seemed in some
ways quite provincial, yet at the same time was much more global than
Mountain View. One could not find in Vladivostok California’s diversity
of cuisine or languages, yet the existence of the external world was much
more apparent than it ever was in California. Many of my conversations
revolved around places outside Russia—in particular, the United States,
which seemed to be visible from Vladivostok in the way no country is from
California. I started developing an interest in understanding how people
who work in “peripheral” places maintain ties to the places they consider
more “central” to their field. Trips to Brazil and Finland the following year
solidified this interest.

By September 2004 I had decided to focus my dissertation research on
software developers in Brazil and their access to software knowledge from
the foreign centers of software practice. At the time, it did not occur to me
to ask whether Brazilian software developers were in fact in a place where
locally generated software knowledge was in short supply and whether
they actually tried to access knowledge from places such as Silicon Valley.
Both assumptions turned out to be correct—the developers I later inter-
viewed typically saw Rio as no match for Silicon Valley as far as software
goes, and they most certainly did seem focused on keeping up-to-date with
what was happening abroad. Such assumptions, however, hid many of the
questions that later came to dominate my thinking and to which I will
turn shortly.

After another year at Berkeley, spent learning Portuguese and reading
social theory and economics, I arrived in Rio de Janeiro in June 2005 for a
six-month stay and started building my sample of “software professionals.”
I defined the term loosely, including in it people who were trained to write

The Wrong Place 13

software, regardless of whether they actually wrote it as a part of their job,
and people who actually wrote software, regardless of whether they were
trained to do so. (I later switched to the term “software developers” to avoid
the presupposition that software developers are “professionals.”)

My sample combined elements of a “theoretical sample” and a “snow-
ball sample.” The term “theoretical sample” describes an approach to
sampling that involves the researcher seeking “cases” they hope will chal-
lenge their preliminary assumptions and lead to further development of
the theory (Glaser and Strauss [1967] 1999). Such a sampling technique
often aims to increase the diversity of the sample, in order to compensate
for its small size. A common way of building such a sample is by asking
interviewees to recommend additional people who could be interviewed
(a “snowball” technique), either specifically asking for people matching
certain characteristics or selecting them from among the nominees. In my
case, I attempted to include among my interviewees every type of software
developer I could identify, “oversampling” atypical individuals. For that
reason, I made sure to interview not only developers graduating from top
universities, but also their professors, continuing my quest for the ultimate
“alpha-geeks” until I interviewed two of the authors of the Lua program-
ming language, to which I dedicate chapters 6 and 7. I similarly attempted
to include developers with as little education as I could find. I interviewed
people from a range of work environments: small companies, large local
companies, multinationals, university research labs, people officially
employed by their companies and those hired as contractors, employees
of the public and private sector. I talked to people of different ages, and I
made an attempt to include women in what otherwise was turning out to
be a heavily male-biased sample.

I came to Rio with basic knowledge of Portuguese, though not quite
ready to conduct interviews in Portuguese comfortably. My earliest inter-
views were thus conducted in English, while I was also taking private classes
to better prepare for interviews in Portuguese. I started conducting such
interviews in the beginning of my second month, at first resorting to Por-
tuguese only when talking to interviewees who could not speak English. As
my Portuguese fluency improved, I conducted more interviews in Portu-
guese, eventually using English only with the developers who spoke fluent
English and preferred to talk to me in it. This awkward start and the subse-
quent change in the language of the interviews turned out to be a blessing
in disguise. My own struggles with Portuguese made me somewhat more
sensitive to my interviewee’s struggles with English (and more appreciative

14 Chapter 0

of their successes with it), while alternating between English and Portu-
guese exposed me to the different discourses invited by each language.

During my second month in Rio, I learned a methodological lesson that
greatly affected the rest of my project. Most developers that I had inter-
viewed up to that point assured me that they never discussed technology
outside work, which I found quite surprising. I brought this up during an
informal post-interview chat with a developer who did mention discussing
technology and work with friends. He suggested that the other interview-
ees were simply not willing to admit it. Talking about work, he explained,
was simply not considered cool in Rio—young men are expected to talk
about soccer and women, not computers. He assured me that my other
interviewees did talk about technology with friends, and that I just had to
know how to ask. As I soon came to realize, small differences in wording
and intonations did indeed affect greatly the interviewees’ readiness to talk
about talking about technology. The incident also made me realize, how-
ever, for the first time, the subtle incongruence between the local culture
and the seemingly global software practice. Furthermore, it led me to start
paying attention to not only what my interviewees were telling me, but
also why they were telling me that, as well as to things that were unsaid or
sometimes half-said. (Another point that I learned in this and other similar
interactions was the importance of drawing on “ethnomethods”—develop-
ers I interviewed in Brazil became a great source of explicit advice on how
to interview other Brazilians.8)

In late August 2005, when discussing my plans with a senior official
of the Ministry of Science and Technology, I got reprimanded for trying
to understand Brazilian reality in isolation from Brazil’s history. I took
this criticism seriously. Though my investigation into Brazil’s history and
its relation to the current practices did not come together until after my
return, I did use my visit to discuss my interests with a number of scholars
affiliated with the Federal University of Rio de Janeiro, including some who
observed firsthand Brazil’s technology policy in the 1970s and 1980s—or
even helped shape it. Those conversations helped me gain a better under-
standing of Brazilian history from a perspective that is not very popular
today, especially among the younger of my interviewees. This perspective
gave me a point of comparison that helped me question the idea of “global
technology” and start looking at how the global nature of technology is
constructed through local work.9

In January 2006 I returned to Berkeley to analyze my data and to pre-
pare for my qualifying exam before another five-month trip to Rio. During
that time my interest increasingly shifted from the mechanics of how my

The Wrong Place 15

interviewees kept in touch with foreign technology to the tensions and
contradictions in some of their accounts. I came to see those contradictions
as reflecting the underlying conflicts between their commitments to the
local place and to the “global” (but often also quite foreign) technological
practice. I also started recognizing in those tensions the different images of
the world that the developers had.

In September 2006 I exchanged a few email messages with “Rodrigo
Miranda,” one of my first interviewees in 2005, a coordinator of an open
source project called “Kepler.” The project aimed to build a web develop-
ment platform based on Lua, the programming language developed in Rio
de Janeiro that I referred to earlier.10 When I mentioned to Rodrigo that I
was planning to return to Rio in early 2007, he asked me if I would like “to
participate in the Lua adventures,” adding that he might be able to find
funding to pay me to work on some parts of Kepler. I declined the job offer
but took time to learn more about Kepler and Lua—projects that I earlier
treated as too atypical for serious investigation. As I learned more about
them, I found myself puzzled and surprised at every step. I was also starting
to get a new understanding of the more typical cases. I then decided to ded-
icate half of the second phase of my fieldwork to Lua and Kepler, reserving
the other half for a study of a more typical case—some company building
custom web applications for local clients, using Java, a popular program-
ming language and a software development platform by Sun Microsystems,
a California company.

In February I joined the Lua mailing list, spent some time reading its
archives and did six interviews with Lua users in California. I then went
to Rio to start a new round of fieldwork, having already secured not only
Rodrigo’s invitation to study Kepler and the Lua team’s blessing for study-
ing Lua, but also a desk in Rodrigo’s office at “Nas Nuvens,” a company
that sponsored Kepler. I thus jumped into my study of Kepler right away,
leaving my study of a “typical” company for the later part of my stay. As
it turned out, I arrived at the right time: Rodrigo was about to try a new
approach to the project that would aim to “open” it in order to draw in a
larger number of remote participants.

Despite having seemingly open access to the project and getting a
chance to meet most of the participants early on, I soon confirmed my
suspicions that mere physical observation does not go very far when study-
ing software work: one mostly gets to see people staring at their screens,
typing, and occasionally swearing. Such observation gets even more com-
plicated when the participants do their work in different parts of the city,
which cuts the amount of time dedicated to water cooler conversations

16 Chapter 0

even further (replacing them, e.g., with instant messaging, a more private
medium). Without literally looking at the developers’ monitors over their
shoulders, both at work and at home, and keeping track of their solitary
work, private emails, and instant messenger conversations, cell phone calls,
and face-to-face chats, one can hardly see all the work that goes into the
creation of the software project.11

I tried to compensate for this with interviews, but my conversations
with the developers often seemed too removed from what they were actu-
ally doing. In fact, after a few weeks, I began to doubt whether anything
was actually even happening. I decided to start helping Rodrigo with the
project’s web site, but felt that even this was giving me too secondhand
of a view. Our discussions of the web site, however, soon arrived at the
conclusion that we wanted to run it as a wiki—a web site that allows visi-
tors to make changes to the content. After we went through a number of
options for wiki software, I made a fateful decision to write my own wiki in
Kepler, which was after all a platform for developing web applications such
as wikis. Even though writing a simple wiki only took a few days, it imme-
diately changed my place in the project. As the first public application built
on the platform, the wiki generated immediate interest—and immediate
demand for improvements. As I started spending time making changes,
my conversations with the developers changed. I was now one of them, a
member of the project and the larger “Lua community.”

I found in such active participation an answer to many of the problems
of studying software work that troubled me at first. While no method can
reconstruct the project in its entirety, active participant observation pro-
vided me with a partial solution: a situated and integrated picture that
weaved together some private emails and instant messenger conversations,
some late night conversations over pizza, and quite a few hours alone in
front of the monitor making sense of debug traces.12

Such engagement also created a number of challenges. While my own
technical background proved a blessing because it allowed me to get
engaged, I soon came to face the challenge of getting involved without
“going native.” A certain degree of resocialization is of course a crucial
aspect of the ethnographic experience; hence, many ethnographers believe
in doing ethnography far enough from home to achieve isolation from
the home environment (see Van Maanen 1988). Too much involvement,
however, can limit time available for reflection. It also raises serious ques-
tions of commitment. I got asked, on quite a few occasions, whether my
participation in the project was “serious” or “just a research project.” To be
a participant was to be involved in a “serious” manner, treating the activity

The Wrong Place 17

as meaningful and important on the same terms as the other members.
Faced with this choice, I decided to get involved seriously. This led to a
struggle to maintain balance between my life as an ethnographer and my
life as a Kepler developer, but in the end I felt it was worth it.

In traditional ethnography, the obvious need to physically return home
provides ethnographers with a natural end to the involvement—and hope-
fully keeps them from making unrealistic commitments before that. Virtual
projects done over the Internet create an opportunity—and in the view of
some members an obligation—for the ethnographer to maintain commit-
ment to the project through continued remote participation. Since leaving
Brazil in August 2007, I have stayed involved with the project, following it
through its ups and downs, finding it impossible to disengage from it even
after Rodrigo himself decided to move onto other things.

In June 2007, I moved my base from Rodrigo’s office to the office of
“Alta,” a software company building Java web applications for local clients.
My time at Alta was shorter than my engagement with Kepler and also sub-
stantially less participatory, because I continued to be involved with Kepler
and conduct interviews related to both Kepler and Lua. As it soon became
clear, my commitment to Alta was insufficient for the company to depend
on me—especially when its obligations to clients were at stake. To say it dif-
ferently, my participation would not have been sufficiently “serious.” I had
to settle for a relatively passive role: spending time in the office, chatting
with the employees, conducting sit-down interviews with them, sometimes
watching their work over their shoulder, poking around in the code reposi-
tory, but not actually doing their work together with them. Despite such
limited participation, the six weeks spent in Alta’s shiny office provided me
with an opportunity to better understand a different, and in many ways a
more typical, work environment.

I returned to the United States in August 2007, bringing with me 150,000
words of field notes, not counting notes and recordings for over a hundred
interviews.13 Over the course of the following years, I sifted through this
material and theoretical literature, looking for ways to put the two in a
conversation with each other. The next section outlines the result of this
process.

The Chapters that Follow

This introduction is followed by eight chapters and a conclusion. Chapter
1 lays a theoretical foundation for the book, outlining with more preci-
sion analytical concepts employed later in the book. (Readers who would

18 Chapter 0

prefer to avoid a strong dose of social theory upfront may consider start-
ing with chapter 2, perhaps returning to chapter 1 later.) I argue that to
understand Rio developers’ engagement with “software development,”
we must conceptualize software development as “a world of practice.” I
show how Giddens’s theory of structuration can be extended to analyze
the spatial expansion of worlds of practice and how such analysis can be
applied specifically to software development. In chapter 2, I add some eth-
nographic flesh to the theoretical skeleton developed in chapter 1, taking
a slice through many of the contexts explored in the book while focusing
on a particular theme: the use of English and Portuguese by Rio software
developers, which illustrates the developers’ position between the world of
software and the local world of Rio de Janeiro.

Chapter 3 explores developers’ early steps toward the software profes-
sion, looking at biographies of a small number of developers. I first show the
adolescents’ cultural entry into the world of computer “nerds” that often
precedes the engagement with labor markets. I then turn to the transition
from the cultural to the economic engagement with the world of software
practice. Throughout this chapter, I look at how neophyte software prac-
titioners build both local and global connections, entering the world of
software simultaneously from and in a peripheral place. Chapter 4 switches
from the situated perspectives of Rio’s young nerds to a broader look at the
world of software development as a whole, outlining its history and look-
ing at its current geographic organization, pointing out a strong asymmetry
between the kind of work that is done at the “central” and that which is
done at the “peripheral” sites. I then turn to the history of computing in
Brazil to explain the local politico-economic structures encountered by the
young nerds seeking to convert their passion for global software into a local
career. Despite Rio’s relative isolation from the larger centers of software
production, a myriad of ties link the city to other parts of that world. This
chapter shows how some of those ties were built historically and the work
that went into their construction.

Chapter 5 starts a discussion of the opportunities faced by Rio soft-
ware developers today by looking at Alta—in some ways a typical software
company in Rio de Janeiro, engaged in building local applications using
software produced in California. Chapter 6 turns to a very different kind
of project: Lua, the globally successful programming language developed
in Rio de Janeiro that I introduced earlier. I first discuss Lua’s use abroad,
drawing on my interviews with users of Lua in California. I then present the
history of Lua, focusing on the ways in which Lua had to gradually separate
itself from the local context to achieve its global success. Chapter 7 turns

The Wrong Place 19

to Lua’s relationship to Rio de Janeiro and Brazil in the recent years. I show
the continued tensions between Lua’s adoption in Brazil and its status as
a global programming language. I present a number of conflicting—and
often conflicted—opinions on the possibility of viewing Lua as a “patriotic”
artifact and a potential vehicle for local development. Chapter 8 looks at
Kepler, a project that aims to bridge the two different worlds: the mostly
local world occupied by Alta and the mostly global community inhabited
by Lua. The themes of the book are summed up in chapter 9.

1 Global Worlds of Practice

This book aims to understand the nature of globalization, and in particular
the nature of the globalization of software work. In my approach to global-
ization, I start with two premises. The first premise is that globalization is a
real phenomenon, and quite likely one of the most important dimensions
of the set of transformations taking place in today’s world. The second is
that we cannot understand globalization just as a matter of space ceas-
ing to matter. Contrary to pundits’ pronouncements over the last decade
(Cairncross 1997; Friedman 2006), distance is not dead and the world is
not “flat.” In fact, as many authors have argued, place might be becoming
more important than ever before. (See, e.g., Sassen [1994] 2006; Florida
2008.) Understanding globalization therefore requires close attention to
local place. Yet, we cannot understand it by looking at individual places in
isolation. Globalization means a growing importance of global contexts that
cut across local places. The system of relationships that comprise global
software development represents one such context. To make sense of glo-
balization, we must look at such global contexts in their relationships to local
places. We must note, in particular, how global contexts get connected to
each place and how they penetrate (or are drawn into) local processes. For
understanding the globalization of technical work and knowledge, a par-
ticular kind of global context is crucial: I call it global worlds of practice. This
chapter develops this notion as a theoretical counterweight to the idea of
place.

I use the term worlds of practice to refer to systems of activities comprised
of people, ideas, and material objects, linked (and defined) simultaneously
by shared meanings and joint actions. Each of such systems represents,
to quote Schatzki (1996), a “temporally unfolding and spatially dispersed
nexus of doings and sayings” (89). In other words, a world of practice
involves a system comprised of material actions (“doings”), as well as
meanings and signification (“sayings”), that maintains its regularity across

22 Chapter 1

time and space. Of course, as we talk of “doings and sayings,” we need to
remember that the “doings” connect people and material objects, while the
“sayings” connect people, objects, and often documents. In other words,
the doings and sayings are not the sole elements of a world of practice, but
rather the relations that define it.

How such systems of doings and sayings are reproduced in time is an
instance of a larger question that has occupied social theory from its early
days: the problem of social order—the question of why social systems
maintain continuity over time. I believe this question is best answered by
drawing on a body of sociological thought known as “theories of practice,”
as I explain later in this chapter. How such systems are replicated and syn-
chronized across space is a problem that has attracted less attention, though
it relates closely to a cluster of theoretical challenges that is emerging as
central to twenty-first-century social science and concerns the nature and
mechanisms of globalization. After introducing the concept of worlds of
practice, I focus the later parts of this chapter (and the rest of the book) on
this second question, the problem of space.

Worlds of practice vary in the scale of their spatial dispersion. Some of
them can be confined to specific places. Many of them, however, are global,
connecting places spread far and wide. Being global, however, does not
mean being omnipresent or homogeneous. It also does not mean being dis-
connected from local places. Rather, it means being connected in concrete
(and often very different) ways to many places dispersed around the world.
Each place must be connected one by one, often through a long process
that requires much work on the ground. To borrow an analogy from Latour
(1987), a global world of practice can be likened to a railroad network. Once
the tracks reach a particular place, people who reside in this place may
become members of the radically different context created by the railroad
network. Some will gain access to new resources that they can “mail-order”
from far away. Some will have new resources used against them. But before
all of this can happen, the tracks must first be laid. And they cannot be laid
without substantial local work.

Establishing a connection between a local place and a world of practice
is not a trivial process, and the railroad metaphor does not quite do justice
to its complexity. A practice is a system of many interconnected elements;
it cannot be simply copied-and-pasted from one place to another. Instead,
this process is often best understood using Giddens’s (1991) concepts of
disembedding and reembedding. First, some elements of practice—people,
ideas, tools—must be dislodged from their original context, changed so
as to become mobile. Such mobile elements then arrive in a new place,

Global Worlds of Practice 23

but do so as isolated pieces, disconnected from other elements that gave
them power within the original system. To regain this power, they must be
reembedded—become a part of a local system of doings and sayings. This
usually means that elements brought from afar would need to be made to
work with those of local origin, many of them repurposed or pulled out
of extant systems. The resulting system will be an assemblage of ill-fitting
parts “hacked together,” to borrow a programmers’ term. In chapter 4, for
example, I look at how computing technology was first brought to Brazil
in the 1960s, and some of the challenges and “hacks” involved in fitting
US-built devices into the local context of Rio de Janeiro.

The work of disembedding and reembedding does not merely happen—it
is done by specific living people. We must therefore understand why and
how they do this work. I argue that to understand the process of reproduc-
tion and later synchronization of practice, we need to consider that worlds
of practice have two sides: a cultural and a material. We must consider
simultaneously how participants’ actions are guided by systems of mean-
ings as well as by existing configurations of material resources and power.
The mutually constitutive relationship between those two sides of prac-
tice becomes particularly important when we consider the reproduction of
practice across space, examining how imported ideas shape local resources
and how imported artifacts are used to shape ideas. In the case of software,
we must take seriously the practitioners’ claims to be “in love” with their
line of work while also remaining mindful of how software development
fits in the global economic system.

The local bricolage of foreign and native pieces that results from this pro-
cess of reproduction may sometimes lead to a new practice that would split
off from the original. In many cases, however, the local practitioners will
choose to cultivate their ties to the remote places from which the practice
was brought, looking to such places as both sources of additional elements
and sources of legitimation. They may often find that their continued
ability to engage in the practice locally and their access to local resources
requires being recognized as legitimate representatives of the global prac-
tice. To quote an artist interviewed by Levine (1972), “If you want to show
[your art] in Chicago, you must move to New York” (298). Those unwilling
to move must put additional efforts into securing their global credentials by
other means. Their daily work toward this end will help ensure the growing
similarity of local practice to the remote originals. The increased similarity
of context in turn will facilitate migration of elements.

Even when the tracks are in place, however, not every station along
the railroad is the same. Some are hubs; others see one train per week.

24 Chapter 1

Globalization links places, but it does not equalize them. Often, it highlights
the differences. A small town without a railroad may be a center of its own
small world. It must be connected to a center to truly become the periph-
ery. Being peripheral often means being connected tentatively and being
dependent on resources that can be withdrawn. And while in some cases,
the peripheral participants may hope to become the new center of the prac-
tice, quite often peripherality remains an important structural constraint
on the development of the practice in a peripheral place—a constraint
that is in part perpetuated through the efforts of the local practitioners
themselves.

In this chapter, I develop the concept of “worlds of practice” by starting
from the notion of “communities of practice” that has become a popular
way of thinking about reproduction of knowledge. I point to a number
of problems with thinking about software developers as “a community,”
arguing that the conceptual strength of the idea of “communities of prac-
tice” lies in the notion of “practice.” I next attempt to unpack some of
the conceptual apparatus hidden behind this term, drawing primarily on
Giddens’s (1979, 1984, 1991) theory of structuration. I then discuss how
the theory of structuration can be applied in particular to the problem of
reproduction of practice across space, and the importance of paying atten-
tion to the global imagination of local actors. I also return to the notion
of “community,” arguing that, while the idea of community should not
be overemphasized, worlds of practice are bounded and their members do
possess a certain collective identity. Their boundaries and the boundary-
making processes are important for understanding the process of reproduc-
tion of practice, because practices are not reproduced in isolation, but as a
system of practices. This helps explain how a practice can be established in
a new place. Finally, I discuss how peripherality affects local practice once
the practice is established.

Communities, Networks, and Worlds of Practice

In the late 1980s, a group of researchers from Xerox PARC, a Palo Alto
research laboratory, established the Institute for Research on Learning
(IRL), a new research center aiming to rethink the fundamental concepts
of education. Considering PARC’s fame for pioneering in the 1970s much
of the technology that defines today’s computing experience, one could
have expected IRL to make an impact on the field of education through an
array of educational software and gadgets. Instead, this impact came in the
form of a book that questioned the notion that learning can be understood

Global Worlds of Practice 25

as acquisition of knowledge. Situated Learning: Legitimate Peripheral Partici-
pation (Lave and Wenger 1991) argued that learning must be seen not as
a matter of transfer of knowledge from the instructor to the learner, nor
even as the learner’s “construction” of knowledge, but rather as a matter
of the learner’s deepening engagement with “a community of practice,”
which the book described as “a set of relations among persons, activity, and
world” (98). In other words, learning cannot be understood as anything
other than the process that leads a novice to become a successful partici-
pant in some collective activity.

In the years after the publication of Situated Learning, the notion of
“communities of practice” gained substantial currency, especially in the
organizational studies and business literature. As Duguid (2008) argues, its
popularity may have been largely driven by the “seductive” term community,
as well as by the choice of examples in the article that introduced the notion
to the organizational literature (Brown and Duguid 1991), which inadver-
tently helped management scholars take what was meant to be a critical
perspective (rooted substantially in Marx’s notion of “praxis”) and incor-
porate it into a standard toolkit for corporate “knowledge management.”1

In addition to being partly responsible for this Panglossian turn, Lave
and Wenger’s (1991) use of the term “community” has influenced the evo-
lution of the concept in another unfortunate way. The term “community”
was generally understood as referring primarily to a group of people, often
further imagined as a concrete, local, and often “tight-knit” group. In much
of the recent literature, the term “communities of practice” is primarily
used as a more positive synonym for workplace cliques.

If communities of practice are understood to be cliques, then Lave and
Wenger’s theory becomes largely reduced to the idea that knowledge and
practice fundamentally reside in small groups and depend on face-to-face
interaction. There is quite a bit of truth to this idea. As many authors have
argued in response to the proclamations of death of distance, face-to-face
interaction remains crucial for human relations. The success of the “infor-
mation revolution” has not stopped the flux of talented engineers into Sili-
con Valley but rather accelerated it (Brown and Duguid 2000). Nonetheless,
overstressing the importance of local cliques leads us to a view of knowl-
edge and practice that simply cannot square with the daily globalization as
experienced by the people I met in Brazil. Driving through Silicon Valley
along El Camino Real, one might sometimes forget about the world behind
the two hill ranges that fence off the valley. Looking at the world from a
place like Rio, however, the limitations of this view become quite clear.

26 Chapter 1

When I started interviewing software developers in Brazil in 2005, they
often asked me if I was a developer myself. When they did this, they were
not inquiring whether I was a member of their local clique—they usually
knew that I was not. Instead, they wanted to know whether I belonged to
a large and somewhat abstract collective of people—several million around
the world—who write software code. As a foreign member of this group,
I was not expected to understand all the local meanings and norms. For
instance, my interviewees took time to explain to me the many difficulties
of doing software work in Brazil. They also pointed out specific people in
specific organizations that I should talk to—again, correctly assuming that
I would not know by myself who the important people were. At the same
time, they expected me to understand their technical jargon (at least when
used in English), as well as many of their values and practices. For example,
having identified myself as a “former software developer,” I was expected
not only to know what a “source control system” is, but also to understand
the technical and the social implications of the statement that a particular
company lacked one. (At the technical level I would need to imagine the
likely outcomes, while at the social level I would be expected to form the
appropriate opinion of the people who run the company.) In fact, I often
needed to make a special effort to make my Brazilian interviewees suspend
the assumption that I share their meanings and opinions and to explain
everything to me, as if I were not one of them.

This willingness to assume that I would understand their terms and prac-
tices is not a matter of wishful thinking. Brazilian software developers’ work
is, in fact, quite similar to that of software developers in other countries.
As I will illustrate in more detail later, this involves not just facing similar
problems, but solving them in similar ways, relying on the same set of con-
cepts, calling relevant objects by the same names (either in English or by
using Portuguese terms borrowed from English), and making many of the
same jokes along the way.

Brown and Duguid (2000, 2001) attempt to address the limitations of
such a “local” understanding of communities of practice by introducing the
notion of “networks of practice,” which they define as widely distributed
networks in which local communities serve as nodes. People participating
in such networks, they argue, can share knowledge across great distances
by exchanging documents and other forms of knowledge media. As Duguid
(2005) points out, however, successful communication in such networks
assumes prior commonality of practice. Globally shared documents, rep-
resenting the global “knowing that” (Ryle 1949), can be powerful because
they go through local interpretation aided by the situated “knowing how”

Global Worlds of Practice 27

that the participants acquire through in-person participation in the local
community of practice. We are thus left with the question of how members
of remote communities come to share the situated knowledge that is said to
be necessary for understanding globally circulating documents.

One possible answer is that practice is spread and synchronized by itin-
erant practitioners. The travel of people engaged in knowledge-intensive
work has been noted by many authors (e.g., Traweek 1992; Castells 2000;
Knorr Cetina 1999; Xiang 2006), and Saxenian (2006) puts circular migra-
tion at the center of her explanation of the development of links between
the silicon chip industries of California and Taiwan and between the soft-
ware industries of California and India. Despite the importance of such
physical movement of people for certain kinds of practice, however, long-
range migrants are still a fraction of the world’s population and their travels
tend to link rather specific locations (e.g., San Francisco and Bangalore).
No matter how close San Francisco may be to Bangalore, most cities in the
world, even large ones like Rio de Janeiro, are far from both in the experi-
ence of most people who live and work there. At least in the case of the soft-
ware developers working in Rio de Janeiro, it is clear that most of the work
of keeping the local practice “up-to-date” is done by people who rarely (if
ever) leave Brazil. And while such people are hardly Castellsian “network-
ers” (the powerful globe-trotting “information brokers,” according to Cas-
tells 2000), we also cannot dismiss them as the downtrodden servants of
global capitalism (“the networked” in Castells).

Understanding those larger global collectives of practitioners as “networks”
also places emphasis on the individual ties between practitioners, downplay-
ing the importance of the collective nature of practice—a problem that plagues
most attempts to model society in terms of “networks.” Being a software
developer is not just a matter of establishing ties with a few other people who
engage in the same practice and then using those ties to pump information
and influence. Rather, it involves identification with a named global collec-
tive (“developers,” “coders,” “pessoal do software”) and acceptance of certain
meanings and norms as meanings and norms of the collective rather than of
specific individual practitioners. For this reason, I avoid the term “network”
and instead describe those larger collectives as “worlds of practice.”

I borrow the term “world” (or “social world”) from the Chicago school of
sociology, where it has been employed since the 1930s, most famously by
Strauss (1978, 1982) and Becker (1982; see also Becker and Pessin 2006). This
term has often been used to denote loose collections of people united by
interests, outlook (Shibutani 1955), or activities. Social worlds can be quite
large in their spatial dispersion and (unlike most notions of “community”)

28 Chapter 1

do not carry the implication that the members know each other or inter-
act on a regular basis. Strauss (1978, 1979) considers this dispersion quite
explicitly, describing the activities that define each world as occurring in
specific “sites”, introducing the possibility of an analysis of the relationship
between the sites.2 Levine’s (1972) study of the art world of Chicago that
was quoted earlier in the chapter can be seen as an example of this kind of
analysis, pointing out the dependence of the art activities taking place in
Chicago on what is happening in New York City.3

Levine’s discussion of the nature of this dependence also illustrates
Strauss’s notions of “authenticity” and “authentication” in social worlds
(Strauss 1978, 1982). Unlike “networks,” social worlds are usually under-
stood as bounded, with a distinction drawn between members and non-
members. Membership, however, can be a matter of degree. As Strauss
(1978) argues, some participants may be seen as more authentic representa-
tives of a particular world. This observation, he points out, raises questions
about the processes of authentication: “Who has the ‘power’ to authenti-
cate? and how? and why?” (123). Levine’s analysis suggests that such power
may have much to do with place. Some places serve as “meccas” of their
worlds, carrying tremendous power not just in terms of practical ability
to coordinate resources but also as sources of legitimation and arbiters of
membership. This connection between space and authentication comes up
repeatedly throughout this book. To paraphrase Levine’s interviewee, if you
want your software to be used widely in Brazil, you should write it in Silicon
Valley.

The concept of social worlds presents a number of challenges, in par-
ticular due to its substantial vagueness and its ambivalence about the locus
of agency in social worlds.4 In developing my notion of “worlds of prac-
tice,” I attempt to solve some of those challenges by building on a theoreti-
cal foundation provided by the idea of practice. In the next two sections I
explore the concept of “practice” in more detail, showing in particular how
it can give proper recognition to the agency of the people who participate
in such worlds while giving us a way of looking at structural constraints
on individual agency. This will help us understand how a world of practice
is gradually established in a new place and how it operates in a peripheral
location after that.

Practice and Structuration

Practice is a complex concept with a sinuous history. It is often employed
in modern social science without being defined and in ways that alternate

Global Worlds of Practice 29

between its technical and vernacular meanings. A quick review of the con-
cept’s history may help reduce some of the mystique that is sometimes
associated with practice theory.

In philosophy, the concept of “practice” goes back to Aristotle, who used
the Greek term “práxis” (πρᾶξις) in two different ways. In some cases, he
employed its vernacular Greek meaning of “action,” which could refer to
a wide range of human activity.5 (In this way, the vernacular meaning of
“praxis” in ancient Greek appears to correspond substantially, though not
fully, to the vernacular use of “practice” in modern English.) However, Aris-
totle also introduced an additional technical sense of “praxis” to denote a
particular kind of human action, which he distinguished on the one hand
from “theory” (theoria, contemplation of the world aiming at truth) and on
the other hand from “making” (poiesis, action aiming at creation of tan-
gible products). This narrow sense of praxis thus referred to human activity
that is transformative, yet free from economic rationale (and hence distinct
from “work”). In later European philosophy, the distinction between praxis
and poiesis largely disappeared, as the Enlightenment did away with Aristo-
telian prejudice against productive “making.” (If the three-way distinction
had been preserved, modern “theories of practice” would perhaps be more
appropriately called “theories of making.”) The remaining two-way dichot-
omy between practice/making and theory became increasingly important
in Western thought, however, especially with the rise of the Industrial Rev-
olution and Adam Smith’s analysis of the role of labor in social life. A num-
ber of thinkers attempted to reconcile this newly discovered importance of
practical activity with idealist philosophy (and in particular with German
idealism). In particular, this task was undertaken by Karl Marx, who called
for materialist philosophers to shift their attention from trying to under-
stand how people theorize the world to looking at social life as “essentially
practical” (Marx [1845a] 1978, 144). This meant, in particular, situating
human consciousness in the context of “material practice,” seeing today’s
world as a product of the historical work of previous generations (Marx
[1845b] 1978, 170), and trying to understand social change by looking at
human work to transform the world rather than at the evolution of ideas.

In this Marxian sense of “material practice,” nearly all modern social
theory is a theory of practice (or, perhaps, theory of poiesis). Even social
theorists that focus substantially on the ideational aspects of social life
typically consider those together with an analysis of members’ practical
concerns—for example, finding and holding a job or some other source
of income. (Weber’s classic Protestant Ethic and the Spirit of Capitalism is an
example of this approach.) In the second half of the twentieth century,

30 Chapter 1

however, the term “practice” came to be associated with a more specific—
though still quite diverse—set of ideas. In sociology, “practice theory” in
this narrower sense has been exemplified, for example, by the work of Gid-
dens (1979, 1984) and Bourdieu (1977).6 Additionally, the work of many
authors on whom I draw in this book (in particular, Latour and Becker)
shares certain elements—different ones—of “practice theory.” A related set
of ideas has been identified with the philosophical work of Wittgenstein
(see Giddens 1979; Schatzki 1996) and with the psychology of Vygotsky
(1978, [1930] 2002) and his followers (Leontiev [1972] 1981).

One of the things that practice theorists share (to some extent, at least)
is a particular approach to thinking about the relationship between social
structure and human agency, which distinguishes them from two other
approaches that are common in contemporary social thought. One of those
approaches seeks to understand society by breaking it up into constituent
units, such as countries, classes, racial groups, or corporations, and then
analyzing the relations between such units. This “structural” approach
assumes that a society can be meaningfully broken up in such a way and,
further, that the relations between such units are more important for our
understanding of the society than the specific interactions between the
individuals. In other words, under this view, the society moves according to
the logic of the units, not of individual people. A different approach stresses
individual agency and microinteractions, putting into the background the
larger social structures, if not outright denying their existence. In contrast
to those two approaches, adherents of practice theory typically look to
consider explicitly the relationship between agency and structure, refusing
to give priority to one over the other. In most cases, they recognize that
human action is strongly dependent on the structure of the social systems
in which it occurs. On the other hand, they see such systems not in terms
of an interaction of fixed units that follows its own higher-level logic, but
rather as arising from the daily action of individual people and re-created in
such action. Following practice theory typically means paying close atten-
tion to how social systems are constructed and reconstructed through indi-
vidual activity and, at the same time, how they constrain individual action.

Anthony Giddens’s theory of structuration provides one particular
approach to such reconciliation between agency and structure. Giddens
argues that the notions of action and structure presuppose one another. For
Giddens (1979), structure has “virtual existence” (63), being real in its effect
on human action yet existing only in the social interactions. Social systems,
Giddens argues, “cease to be when they cease to function” (61). Giddens
offers an analogy using language: grammar rules structure the speech of

Global Worlds of Practice 31

individual speakers, yet such rules persist only as long as they are repro-
duced by the individuals in the numerous acts of speaking.

The focus on the interaction between agency and structure leads adher-
ents of practice theory to view society as composed not just of units that are
capable of making decisions (e.g., nation-states and corporations) or groups
defined by specific characteristics of the members (e.g., by socioeconomic
status), but rather of “practices”—reproduced patterns of human activity or
“regularized acts” (Giddens 1979, 56). In Giddens’s analysis, practices are
co-constitutive with social structure, which itself becomes understood not as
a set of entities, but rather as the regularity of the actions of the individual
members.

Giddens uses two concepts to explain the process through which the
regularity of social systems is reproduced. The first is members’ knowledge
of how their social system works and how things are normally done. Fol-
lowing Sewell (1992), I call such understandings schemas.7 (Sewell’s term
also points to parallels with the notion of “schemas” in cognitive psychol-
ogy, though it is important to not overstate this parallel.8) Schemas help
maintain practices by allowing individual actors to recognize the regularity
of activity and to proceed in accordance with this recognition—usually in a
manner that ensures that the regularity is maintained. For example, when
we enter a restaurant, we recognize this social environment as “a restau-
rant” and proceed to act as customers, because we know that doing so will
get us the results we want.

While individuals can have their own idiosyncratic schemas, the sche-
mas are particularly powerful when they are shared. Shared schemas allow
actors to set expectations for what others would do. When we invoke the
restaurant schema upon entering a restaurant, we do this with an expecta-
tion that other members of this social setting will act out their roles. It is
this expectation that makes it sensible for us to act out our role as custom-
ers as defined by the schema. Sewell points out that collective schemas
correspond to what anthropologists call “culture.” I similarly use the word
“culture” in this book to refer to a set of schemas held collectively by a
group of people.

Practices are also reproduced through use of resources. To borrow Sewell’s
“translation” of Giddens’s somewhat cryptic definition, resources are any-
thing that people can use as a source of power (Sewell 1992, 9), which
in particular can include material objects, as well as human energy and
skills. In Sewell’s reformulation of Giddens’s theory, schemas and resources
are the two main components of social structure that remain in a dual-
ity, simultaneously requiring and sustaining each other. Actors configure

32 Chapter 1

material and human resources in accordance with their schemas. Those
configurations of resources then give schemas a tangible form. The actors
can also “read” configurations of resources to recover schemas from them
(13). Such configurations can of course also provide a context that helps the
actors recover schemas from actual texts.

Applied to software development in Brazil, this perspective would lead us
to look not at the interaction between Brazilian state agencies and software
companies, or at the subjective experiences of the individual programmers,
but rather to put at the center the different “doings and sayings” (Schatzki
1996) that are involved in the development of software. In analyzing such
doings and sayings, we would pay attention to the actors’ use of schemas
and resources, asking how individual software developers gain access to
resources, how they configure and interpret them, and the different sources
on which they draw for their knowledge not only of software itself, but also
of the social structure of the software practice. This, in turn, opens up the
possibility of a more careful analysis of the nature of ties between software
practice in different places.

Once knowledge is understood as rooted in a practice rather than merely
in a community, its mobility becomes dependent not on the limits of group
interaction but on the spatial dimensions of the practice itself. We must
therefore understand not just how words or people reach faraway places,
but how a system of doings and sayings becomes established there. Words
can be brought to new places and yet not be understood. People can move
and proceed to doing something else. As a system of doings and sayings is
established, however, it can draw in new people (including those who have
never traveled) and provide a fitting context for words and things arriving
later.

Imagined Practice

To understand the process through which a practice is established in new
places, we must consider some of the sources of change in practices. While
systems of activities maintain continuity through the mutually sustaining
relationship between schemas and resources, this continuity should not to
be interpreted deterministically. While some theorists of practice (e.g., Bour-
dieu) see practices as almost self-reproducing, I follow Giddens and Sewell
in stressing that practices are reproduced by actors, who possess real agency
and often make real choices, at least within the constraints of resources
available to them. Schemas are not programs run by human computers,
but rather models of the world that help individuals decide how to proceed

Global Worlds of Practice 33

in a given situation. Individuals may find that multiple schemas fit a situ-
ation, and they may choose between them. They can “transpose” schemas
from one situation to another. They can reinterpret resources, finding new
schemas in them. Finally, as members of a society come to know more
about their society (through social science research, among other things),
they develop new schemas, which leads them to the construction of new
practices.9

Bringing a practice to a new place is a form of change, involving recon-
figuration of material resources in the new place as well as a change in
schemas used by people who live there. This change, however, is not
merely a failure of continuity. Rather, it is often driven by purposeful activ-
ity of people who seek to establish the new practice in this place. We can
think of such active expansion of practice as itself a kind of structuration.
In traditional structuration (Giddens 1979), the members reproduce social
structure through their actions that are guided by their knowledge of the
existing social structure, resulting (for the most part) in reproduction of
the existing patterns of interaction. In the “long-distance” structuration,
on the other hand, local actors organize their actions relying not on their
knowledge of their own society and their own current practices, but rather
on reflexive representations of remote social systems.10 The result is often a
change in the local system of interactions that brings it closer to the remote
system.

The use of remote schemas involved in this kind of structuration is a
particular case of what Sewell (1992) calls “transposability” of schemas: the
actors’ ability to draw on schemas that were originally developed for use
in a different context. We should note, however, that the schemas that are
being transposed may in this case be acquired not through lived experience
in the remote social systems, but from descriptions of such systems. This
means that we must investigate how local practitioners achieve their under-
standing of the remote practice and social structure, considering among
other things the specific proactive uses of communication technologies to
learn more about what is happening outside. While practice theory suggests
that reproducing a practice based on blogs is an uphill battle, we should not
assume that such reproduction does not take place. We must also, however,
be mindful of the potential gaps between peripheral members’ models and
reality, and consider the ways in which they may identify and mend such
gaps.

While local members may know a good deal about foreign practices and
social structure, this does not mean that they always draw on this knowl-
edge as a structuring resource. The argument that a California company

34 Chapter 1

does things in a particular way may carry a lot of weight in some situations,
but it may also be dismissed with a reminder that “we are not in Califor-
nia.” This has much to do with local members’ understanding of the ways
in which the foreign context differs from their own, which in turn depends
on their model of the world as a whole and their place in it. For example,
their view of themselves as living in “a developing country” becomes cru-
cial in negotiations of when the imported schemas apply.

Structuration over distance often requires a substantially larger leap of
faith. When a social system maintains continuity, this happens because
the members know that it most probably will. Structuration over distance,
however, requires that activities are structured by a collective understand-
ing not of what is (or will be) but of what is possible. (This is to some extent
true of most social change.) Appadurai’s (1996) discussion of “imagina-
tion” and “the imaginary” (“a constructed landscape of collective aspira-
tions,” 31) can help us understand how reflected understanding of foreign
structure is used in structuring local action. Reflected foreign practices and
structure provide local actors with the elements for constructing imaginary
worlds in which there would a place for them. Once articulated and shared,
such imaginary worlds can become blueprints for action.11

Imagination can also inhibit action. A Brazilian proverb says that a dog
once bitten by a snake becomes afraid of a sausage. When looking at Brazil-
ian software development today we must consider, in particular, the ways
in which one such past snake accident (the “failed” attempt to build a sus-
tainable computer industry in 1970s and 1980s, discussed in chapter 4)
affects today’s actions.

Appadurai (1996) draws a distinction between “imagination” and “fan-
tasy,” seeing the latter as private and as carrying “the inescapable connota-
tion of thought divorced from projects and actions,” contrasting it with
the projective and collective qualities of “imagination” (7). I believe, how-
ever, that we must recognize the fuzzy boundary between the two and the
importance of what I call “subvocal imagination”: imagined worlds that are
too unlikely to be publicly presented as a serious basis for actions, but that
nonetheless influence action in profound ways. I look at this issue more
closely in chapters 6 and 8.

Bounding Practice

I started my discussion of “communities of practice” by pointing out the
danger associated with the term “community.” I then unpacked some of
the theoretical apparatus represented by the term “practice,” showing how

Global Worlds of Practice 35

theories of practice can help us understand the reproduction of social sys-
tems across space. By putting aside the term “communities,” however, we
left out of sight a few important aspects of practice. Systems of activities
such as software development are often bounded, with an important dis-
tinction drawn between members and non-members. It is for this reason
that I call such systems worlds of practice, using the term “worlds” to con-
note collectives of a particular kind—ones that cannot be called “communi-
ties” in the full sense of the word, but which share important aspects with
communities.

Software developers, whether in Rio or in Silicon Valley, often participate
in small groups of fellow-practitioners which can be called “communities”
in the full sense of the word—that is, possessing all characteristics that can
be expected of a “community.” Such characteristics would include physical
proximity of the members, a dense pattern of interactions between them,
and collective identity—namely, the members’ recognition of the group
as a meaningful unit. Access to such communities is crucial for successful
participation in many activities. Perhaps one of the main reasons for this
is that a combination of shared destiny (arising from the shared location)
and past history of interactions facilitates trust. Within a community, one
can know whether a particular person has betrayed trust before and can be
assured that a future betrayal would be costly. Collective identity provides
additional mechanism for identification of members. This increased level
of trust can facilitate joined projects tremendously. In chapter 5, for exam-
ple, I describe how being identified by Rodrigo as “a Herculoid,” a member
of Rodrigo’s community of tech-minded professionals, gained me access to
Alta, a software company on which that chapter is based.

Practitioners can also participate in communities that are characterized
by interaction and collective identity, but not by geographic proximity. For
example, in the course of my work I have also become a member of what
my interviewees call “the Lua community”—that is the community of peo-
ple formed around lua-l, Lua’s main mailing list. Having been subscribed to
lua-l for many years, I have learned to recognize many of the names and
have been myself acknowledged as “a regular.” While such communities
rarely replicate the richness of dense face-to-face interactions, they may be
strengthened with occasional face-to-face encounters.12

While the two kinds of communities described above are important for
understanding practice (and I try to bring them in focus repeatedly in later
chapters), we often cannot properly understand them without placing them
in the context of yet larger collectives. In the case of the software develop-
ers whose experiences I describe in subsequent chapters, we must recognize

36 Chapter 1

that in addition to some of them being members of “the Herculoids” and
“the Lua community,” they also are a part of the global collective of people
working with software. This global collective does not have the dense pat-
tern of interactions that characterize smaller communities, but its members
do share certain things, including a collective identity, expressed through
overlapping labels such as “developers,” “coders,” “computer nerds,” and
“geeks.”13 If the smaller communities can be understood by analogy with a
village, such larger collectives can be compared to a nation. One can rarely
understand a modern village without considering the nation-state of which
it is a part—both in reality and in the member’s understanding of this
reality. Similarly, one cannot hope to understand “the Lua community”
without considering critically the notion of “software developers.” When
such larger named groups are organized around practices, I refer to them as
“worlds of practice.”

Like nations in Anderson’s (1991) analysis, worlds of practice can be
understood as “imagined communities.” To appropriate Anderson’s quote,
the members “will never know most of their fellow-members, meet them,
or even hear of them, yet in the minds of each lives the image of their
communion” (6). This term “imagined” should not suggest that such
“communities” are not real. Like nations, worlds of practice are also tied
together with actual similarity of practice, joint actions, and circulation of
ideas and material resources. As I will try to show, however, this similarity,
joint actions and circulation are themselves to a large extent supported by
the shared sense of communion. This joint re-enforcement, is, of course,
fully compatible with the larger theme of structuration if we recognize
that a collective identity and the notion of “community” are themselves
schemas, which exist in a mutually sustaining relationship with configura-
tions of resources (in Sewell’s formulation) and with practices (in Giddens’s
formulation).

While imagined communities can span expansive distances, they must
nonetheless be bounded. Members of an imagined community conceive of
themselves as belonging to a particular group of people—one that does not
include everyone. One cannot be a member of a kind without there being
others who are not. Being able to draw a boundary between members and
non-members is essential for forming a community. Such boundaries might
not always be clear and may need to be negotiated, yet they must exist at
least in principle. And the more interaction there is between members and
non-members, the more carefully the boundaries may have to be drawn.

The existence of boundaries is important for several reasons. First, it facili-
tates collective action. Members can be expected to possess certain schemas

Global Worlds of Practice 37

and to apply them. Members who fail to act in accordance with the appro-
priate schemas can be sanctioned. Once two people identify themselves to
each other as “software developers,” they establish common ground, which
facilitates joint projects and conversation. Second, maintaining boundar-
ies between members and non-members allows for collective control of
resources. Certain resources cannot be easily held by individuals but also
cannot be left to be spent by anyone. Collective control by a group with
defined boundaries provides a solution.

I can illustrate and expand those notions by drawing on Hughes’s sociol-
ogy of occupations. In his book Men and their Work, Hughes (1958) argued
that occupations are defined on the one hand by “culture and technique”
and on the other hand by a “mandate.” Members of an occupation pos-
sess a particular “technique”—a set of methods for manipulating relevant
objects. They also share a “culture” (“a set of collective representations”;
cf. Sewell’s “schemas”) which allows them to see the world in a particular
way—differently from how non-members see it. Perhaps the most impor-
tant aspect of occupational culture is that it leads to a particular view of
the activities in which the members engage, of why they engage in those
activities, and of what sort of people they are. As we will see in chapter 3,
for example, software developers collectively see software development as
an intellectually challenging line of work and as something that ought to
be done out of passion for technology rather than just as a way of earning
money.

While the technique and culture can be seen as collective resources, few
modern occupations (or worlds of practice more broadly) attempt to exer-
cise active collective control of their culture and technique by preventing
outsiders from learning about them. Rather, the most important collective
resource is the other defining element of occupations noted by Hughes
(1958)—what he calls a “mandate.” To understand Hughes’s notion of
mandate, we need to first consider that practices like “software develop-
ment” do not exist in isolation. Rather, they form a part of a system of prac-
tices, of societal division of labor.

Software developers often describe programming computers as intellec-
tually stimulating and “fun,” talk about being “in love” with software, and
expect others developers to see it in the same way. We must not forget,
however, that, ultimately, people who program computers usually do so
because other people have a need for programmed computers. For most of
the people whom we will meet in this book, writing software is a job that
brings income. This is, of course, no accident. People who program comput-
ers can only do so if they have some way of satisfying the basic necessities

38 Chapter 1

of life. After all, the time spent programming a computer is time not spent
farming, hunting, or making clothes. The practice of software development
also requires access to certain equipment, such as computers, for exam-
ple. Making a computer in turn requires not only knowledge that software
developers usually do not possess but also millions of dollars’ worth of other
equipment, which itself in turn needs to be manufactured. In other words,
the practice of software development requires material resources that must
be supplied by outsiders. This practice is made sustainable because engaging
in it can produce something that is of interest to non-members, supporting
other practices. This means that a world of practice cannot be fully under-
stood (and perhaps cannot even be meaningfully defined) outside of its
relationships with other worlds and with non-members.

Dependence on resources controlled by outsiders makes a practice
dependent on schemas held by such outsiders. Such schemas define “man-
dates” assigning a practice a legitimate place among other practices and
recognizing that some people are allowed (or even expected) to engage in
it. Mandates are collective—instead of recognizing that specific individual
people can legitimately engage in particular activities (say, establishing that
Mr. John Smith can legitimately stick needles into other people’s bodies),
they define categories of people (e.g., “doctors”) who can engage in such
activities, and even get rewarded for this. Similarly, a manager of a retail
company looking to build an e-commerce system would look for “a soft-
ware developer” (and not, e.g., “a lawyer”) to build such a system. A par-
ticular individual must typically be recognized as a member of that category
to get his or her individual “license.” Further, what often matters is being
recognized as a member of the category by outsiders.

In some cases, the mandate is formalized—certain groups are given a
legal monopoly to perform certain tasks. For example, in the United States,
the work of selling securities is by law reserved for a particular kind of peo-
ple, who are colloquially called “brokers” and more formally referred to as
“registered representatives.” In sociology, such groups are called “profes-
sions.” When the mandate is formal, the boundaries of the group are usu-
ally also quite formal. In the United States, securities representatives must
be registered, having passed certain exams, administered by an agency act-
ing under government oversight.

Software developers do not form a profession. Neither in the United
States nor in Brazil is there a legal limitation on who can write software.
Nonetheless, the notion of “mandate” applies to software development
as well: there is still a general understanding that certain tasks should be
done by “software developers.” The boundaries of this latter category are

Global Worlds of Practice 39

informal, but this does not mean that they do not exist. The outsiders need
to know who can claim the mandate that has been given to the group,
which means that claims to membership must be somehow evaluated. The
methods of authentication are themselves subject to negotiation. In partic-
ular, the insiders must do the work of straightening the boundary between
members and nonmembers by establishing the “proper” authentication
procedures and educating outsiders about whom to properly recognize as
true members. Gieryn (1983) calls this active process “boundary-work,”
which can be understood as the work of crafting and disseminating sche-
mas that insiders and outsiders could use for authentication of members.14

While this approach suggests that group boundaries can be a useful tool
for maintaining control of resources, it does not mean that the members
necessarily see this process in such a way. In fact, the boundaries can often
be enforced most effectively when the schemas that govern authentication
naturalize such boundaries. National communities, for example, are often
understood by their members as “primordial.” While modern sociology
typically finds that “nations” as we know them today are recent and may
be best understood as “constructed” over the last few centuries, we cannot
deny the subjective reality of eternal national communities. We must thus
recognize the “constructed primordialism” of nations and ethnic groups
(Appadurai 1996). In the same way, we must take into account computer
nerds’ view of themselves as a different kind of people, perhaps even born
with different brains, while at the same time considering how such under-
standings of who they are may be implicated in boundary work and in the
maintenance of class divisions.

The boundaries of worlds of practice are particularly important for
understanding reproduction and expansion. Becoming a practitioner
means crossing the boundary, turning from an outsider into a member. In
some cases, this process is straightforward and can be understood through
what Lave and Wenger (1991) call “legitimate peripheral participation”:
a novice joins a community by following the steps that the community
has accepted as proper ways of joining it, perhaps taking a subordinate
role to the older members.15 Through active interaction with members, the
novice learns the culture and technique, and becomes accepted as a bona
fide member, transitioning to the more central forms of participation.16

Through such acceptance a novice gains access to resources controlled by
the community and can use the community’s mandate to access the rel-
evant resources controlled by outsiders. Such access will become crucial
for newcomers who decide to stay for the long term. This, however, may
not necessarily be their goal at the beginning. They may join the world of

40 Chapter 1

practice as a community without much interest in the actual practice, espe-
cially in its economic dimensions. As I show in chapter 3, early engagement
with software can simply be a way of “hanging around” with fellow nerds.17

What happens, however, when someone attempts to join a world of
practice in a place where there is no local community of practitioners—or
where local communities that claim to represent the world may themselves
have a hard time convincing others that they can do so successfully? To
understand this, I contend, we must again remember that worlds of prac-
tice do not exist in isolation. They exist as an interdependent system, and
they expand together. The practice of software development, for example,
did not arrive in Brazil by itself. Rather, throughout the twentieth century,
many American practices were being re-created in Brazil. As some remote
practices were re-created, people who engaged in them needed the support
of the related practices. In the case of Brazil, for example, we will see how,
among other things, the Brazilian government’s desire to keep its gover-
nance practices in sync with foreign models required synchronizing the
practice of census-taking. Taking a census the American way required using
a computer. Once a computer was brought, someone had to program it.
The practice of programming was therefore not reproduced in a vacuum,
but rather came together as a part of a larger process of “modernization,”
as I show in chapter 4.

This process of parallel re-creation provides prospective members with
some of the key resources they need to start the reproduction of a prac-
tice. It often does not provide them with everything they need, however.
Full membership in a world of practice requires applying proper culture
and technique while engaging with proper resources, obtained through a
successful claim to the group’s mandate. Those two sides of the practice—
the cultural and the material—must be mutually sustaining. The culture is
learned through engagement with resources while resources are acquired
through demonstration of proper culture and technique. It is important to
realize, however, that those two sides of the practice do not represent its
essential qualities, but rather function as discursive tools that can be used by
members and nonmembers to negotiate rights to engage in certain prac-
tices or to call what they do by certain names. Fulfilling the role de facto
is one test individuals can try to use. The ability to demonstrate similarity
to other members is another test. When those tests yield different results,
the individuals may engage in negotiation as to which one is more relevant
in a given context. Local “boundary work” can further be used to educate
the local public about what categories should be considered important in
specific circumstances. In other words, we can look at the different kinds

Global Worlds of Practice 41

of “moves” that participants can make, using resources that they have to
obtain those that they lack, increasingly establishing themselves as bona
fide members of the practice.18

Practice at the Periphery

The process of reproduction through expansion that I described earlier does
not usually result in a global world of practice spread evenly among all of
its sites. Rather, the sites continue to vary in power and significance. Some
function as centers of the world, defining the practice and coordinating
global activities. At such “centers,” the local community’s authenticity is
rarely questioned and it suffices for an individual to focus on finding his
or her place in the local community, without needing to worry where this
community fits in the larger world. This symbolic capital possessed by the
central actors goes together with control over the much more mundane
forms of capital. As I point out in chapter 4, two metropolitan regions host
headquarters of firms that jointly control over 60 percent of world’s soft-
ware industry capitalization. Work done elsewhere is often directly con-
trolled from those places.19

Other sites are peripheral.20 From the central perspective, they are recog-
nized as present but unimportant. From the perspectives of local outsiders,
the local practitioners may be “good enough” as providers of services, but
their status can be questioned. This has important consequences for how
practice proceeds at the periphery even after it is established there. This
book concerns itself with the periphery.

When looking at a world of practice from a central location, it is some-
times possible to get the impression that everything that matters happens
right there. Peripheral practitioners, however, can rarely afford such a lim-
ited view. They are judged—collectively and individually—on their ability
to represent the global practice, to solve local problems not with local solu-
tions but as central members would have done—for example, developing
a software solution as it would be done “over there in Silicon Valley.” The
need to be recognized as authentic representatives serves as an important
structuring (and synchronizing) resource, because it gives local members
(and sometimes outsiders) the ability to censure lack of compliance with
the “standard” practice.

The symbolic value associated with remote prototypes often presents
peripheral practitioners with a difficult choice: they must decide when to
cast their lot with the local community and when to seek direct ties with
those parts of the social world that lie outside. To understand what happens

42 Chapter 1

at the periphery, we therefore must often consider side by side at least three
entities—the individual, the local community (with all of its factions), and
the larger world with its central sites—noting the different ways in which
the individuals may attempt to “escape” the local community by establish-
ing direct links with the remote centers. By understanding what drives the
individuals to build such ties, we will come to understand not only how the
local community synchronizes its practice with the rest of the world, but
also why peripheral communities may often face problems organizing for
collective action.

Peripheral participation in a practice may often involve a more compli-
cated interaction with the broader local society for several other reasons.
Over time strong worlds can transform the society around their centers,
making it easier for the members to move back and forth between their
world of practice and the mainstream society. For example, while the
“nerd” identity associated with software developers was seen in United
States as somewhat “unmanly” in the past, it was partly incorporated into
“hegemonic masculinity” during the 1980s and 1990s (Kendall 1999). Due
to this historic work, a software developer working in Silicon Valley today
rarely experiences conflict between his identities as “a man” and as “a soft-
ware developer.” Developers working in Rio de Janeiro, on the other hand,
operate in a place where somewhat different forms of masculinity are the
norm. Reconciling the identities of man and nerd is thus harder in Rio than
it is in San Francisco.

A world of practice may also be at peace with the mainstream culture at
the center because aspects of that mainstream culture are often incorporated
as basic assumptions into the culture of this world, and even into its mate-
rial artifacts. Peripheral members, on the other hand, again have to face
the contradictions between the demands of the world of practice brought
from abroad and those of their local mainstream society. This effect is easi-
est to see with language: software developers in California can perform all
of their daily activities in one language, while their Brazilian counterparts
must switch between the language of the software world (English) and the
language of the local society (Portuguese). The choice of language in spe-
cific contexts can thus serve as an important marker of allegiance to either
the local community or the global world of practice (see the next chapter).

The asymmetric relationship between the center and the periphery and
their different relation to their respective local societies have important
consequences for the flow of innovation. New practices and knowledge
produced at the center are often mobile from birth. While such practices
and knowledge may be inextricably tied to local culture and context, this is

Global Worlds of Practice 43

not an unsurmountable problem, since the rest of the world of practice is
typically ready to accept such practices on those terms. A book on software
development written in California in English does not need to be translated
to become successful worldwide: the author can count on the potential
readers either learning English, the language of Silicon Valley, or struggling
through the book with a dictionary. Practices and knowledge generated at
the periphery, on the other hand, have little chance of success outside their
local context unless they are actively disconnected from it. In other words,
central actors can “disembed” their knowledge using the simplest strategy
available, leaving others the hard work of reembedding it at the periphery.
Peripheral actors, on the other hand, must perform the most thorough dis-
embedding, to make reembedding at the center a trivial task. In doing so,
they may have to forgo the needs of local users (or at least the less global-
ized ones), as we will see in the case of the Lua programming language in
the next chapter (and again in chapters 6 and 7).

In doing so, peripheral participants help re-create the asymmetries from
which they suffer themselves. Latour (1987) argues that the foundation of
European science lies in the massive accumulation of basic knowledge of
the world made possible by Europe’s central position in a system of colo-
nial empires—a place where knowledge and resources were brought from
around the world. In addition to peripheral plants, animals, and cultural
artifacts brought for examination to the centers, this accumulation often
involved peripheral individuals themselves. While a few centuries ago colo-
nial subjects were often brought to the center by force, today many go there
of their own will. Often, it is the most talented of the peripheral individuals
who gather at the center. While their move to the center may strengthen
the integration of the peripheral site with the center, it often also leaves
behind broken alliances. Those who remain at the periphery, however,
also contribute to the reproduction of central power, often dedicating their
work to bridging the remaining gaps between the local context and the
resources deployed from the centers. In doing so, they often make such
resources (and those who control them) even more powerful.

When considering the persistent differences between the centers and the
periphery, we must also take into the account the factor known as “network
effects,” or, more formally, “network externalities.” In economics, the term
“network externality” denotes the additional value that is enjoyed by users
of a particular technology when more people come to use it. The concept
originated in the context of telephony when it was observed that each new
user who signed up for telephone service made the telephone system more
valuable for other subscribers who gained an additional person whom they

44 Chapter 1

could call.21 Network externalities can also arise because additional users
stimulate the supply of complementary products by increasing the econo-
mies of scale for the production of such goods. For example, Katz and Shap-
iro’s (1986) classic paper on network externalities discusses the adoption of
VHS VCRs: more people buying VHS VCRs led to the higher availability of
VHS video rentals, which in turn made VHS VCRs more valuable. Network
externalities can therefore lead to “the rich get richer” effect where technol-
ogy that has been adopted by many people becomes increasingly adopted.

Software products and computing services are often characterized by
especially strong network effects. For example, the wide use of the Java
programming language brings numerous benefits to people and companies
who use it. Java programmers can benefit from Java modules and frame-
works written by other Java programmers. They also have access to a variety
of jobs that require Java expertise. The companies, in turn, have access to a
variety of programmers.

While the concept of network effects originated in the context of tech-
nology adoption, it is important to realize that similar effects can happen
around elements of practice that are not technological in the narrow sense
of the term. For example, Grewal (2009) notes the network effects associ-
ated with the use of English as a lingua franca. Each additional person who
chooses to use English adds to the value of the English “network,” making
use of English yet more advantageous. Network effects can also be associ-
ated with places. In many cases, network effects form around technologies
and other elements of practice that are strongly linked with specific sites.
For example, the Java programming language was developed in Silicon Val-
ley and is today controlled by a Silicon Valley company. Network effects
can also, however, take place around locations in a more direct way. For
example, the more engineers and entrepreneurs move to Silicon Valley, the
more attractive it becomes for engineers and entrepreneurs.22

While economic literature typically sees network effects as creating addi-
tional “value” associated with specific technologies, network effects can
also be seen as oppressive in that they constrain individual choice. Grewal
(2009), for example, argues that the wide use of English does not merely
provide additional value to those who choose to speak it. Rather, in many
contexts today it eliminates the choice altogether, making English the only
viable option. (I demonstrate some of this dynamic when I discuss the use
of English by Rio software developers in the next chapter.) Consequently,
Grewal uses the term “network power” to refer to the constraining nature
of network effects. In my own analysis I avoid such terminology since I
aim to highlight individual agency. For example, instead of accepting the

Global Worlds of Practice 45

developer’s choice of English in some context as simply a demonstration of
the “network power” associated with the language, I focus closely on how
participants’ make their choices, even in cases where such choices seem
obvious to the participants themselves. I also contrast cases where English
is chosen to those where it is not.23

It is important to recognize that in the long term peripheral re-creation
of practice can give rise to alternative centers. While most parts of the world
are unlikely to ever occupy this role, some of them can rise to rival the
earlier seats of power. Silicon Valley, after all, was not the place where com-
puting or programming was originally developed and, in fact, had little
more than citrus orchards just a bit over a half-century ago. More recently,
Bangalore has become a new important site in the world of software. (Other
cities in India, such as Chennai and Hyderabad, have also grown a substan-
tial software industry, though they have received less press.) Bangalore is far
from becoming a rival of Silicon Valley and at the moment plays a clearly
subordinate and dependent role in the software world: the best work avail-
able to software developers in Bangalore today is provided by companies
based in the United States, often headquartered in Silicon Valley. This real-
ity highlights, however, the dynamic nature of the worlds of practice.

New centers, of course, often have a steep path ahead of them. Quite
often, their success requires that the local members of the world of prac-
tice create an enclave, separating themselves successfully from the local
context. Bangalore’s Embassy Golf Links Business Park, home to some of
the city’s most prestigious IT employers, stands in striking contrast to the
neighboring parts of the city—the city that itself is a world apart from the
rest of the country. Bangalore’s success might also be attributed to the city’s
relative lack of commitment to any local language and its willingness to
adopt English as the working language. As we will see, Lua’s success in its
niche in many ways involves proper management of distance from local
institutions.

Newcomers are often also handicapped by lack of proximity to the cen-
ters of other worlds. The different worlds of practice form an interdependent
system. Consequently, their central sites coincide to a substantial degree.
San Francisco is a center of a number of worlds, which reinforces its posi-
tion in each of them. On the other hand, while Helsinki had become some-
what of a mecca of the world of mobile software development at the time
I was doing my fieldwork in Rio, few of my interviewees were contemplat-
ing learning Finnish. It is perhaps not a big surprise, then, that Finland’s
leadership in this area started to fade in recent years, as the field became
dominated by two new entrants from Silicon Valley. This means that while

46 Chapter 1

considering the geography of individual worlds of practice, we must keep
in mind the politico-economic structure of the planet as a whole. Rio’s
position in the software world in many ways corresponds to Brazil’s overall
position in the world economy. The fortunes of Rio’s software will likely
continue to be influenced by this.

* * *
This chapter has outlined a theoretical framework for thinking about prac-
tice in space, developing the concept of worlds of practice and showing how
we can think about such worlds as global yet at the same time tied to specific
places. In particular, the concept of worlds of practice helps us recognize
both the agency of individual people who do the work of expanding worlds
of practice to new places and the structuring resources that are offered by
the worlds themselves. The next seven chapters of the book illustrate more
closely the different aspects of this model.

I start with a look at the use of English by Rio’s developers, which helps
illustrate in about the clearest form some of the ideas presented in this
chapter. I then go back in time, looking first at personal histories of devel-
opers entering the world of software in chapter 3, and then at the larger
history of software practice in Brazil in chapter 4. Chapters 5–8 look more
closely at some of the specific contexts, illustrating the different configura-
tions of local and global resources.

2 The Global Tongue

It was a cool day in June, one of the coldest months in Rio de Janeiro, yet
the air conditioner was running on high, making me think that I should
bring a sweater next time to avoid catching a cold. I was in the office of
“Alta,” a company in downtown Rio that, according to its promotional
materials, focused on attending to the desires of its clients through the
use of the newest technologies. In 2007 this was understood by many to
mean building web applications in Java, and this is what Alta did. I was
still getting to know the company and had just been set up with access to
its intranet web site. I logged in and clicked around, browsing a number
of pages: technical documentation, company policies, project descriptions.
Everything was in Portuguese. The situation changed suddenly, however,
when I arrived at the actual source code. Below is an example of what I saw:

/**
* @param weekday - Dia da semana em que o chronoEntry se encontra
* @param start - Data de inicio do Cronograma
* @param oldDate - Data do chronoEntry que esta sendo clonado
*/
private Date weekConvert(Integer weekday, Date start, Date oldDate){
Calendar cal = GregorianCalendar.getInstance(new Locale("pt_BR"));
cal.setTimeInMillis(0L);
//Data do inicio do Cronograma, assumimos que seja sempre segunda.
cal.setTime(start);
//Ajustamos o dia da Semana
cal.add(Calendar.DAY_OF_MONTH, weekday.intValue() - 1);

//Copiamos Hora e Minuto
cal.set(Calendar.HOUR_OF_DAY,oldDate.getHours());
cal.set(Calendar.MINUTE,oldDate.getMinutes());

cal.set(Calendar.SECOND,0);
cal.set(Calendar.MILLISECOND,0);

return cal.getTime();
}1

48 Chapter 2

The code contained a mix of Portuguese and English—or, to be more pre-
cise, a mix of Portuguese and Java (though as we will see, the boundary
between Java and English is often hard to delineate).

Such a mix of languages in Alta’s code in many ways reflects the encoun-
ter of the two worlds: the local world of Rio de Janeiro and the global world
of software practice, giving this encounter a rather concrete expression. As
I found during my fieldwork, the activities and discourse around the choice
of language in this and other contexts quite often express most clearly the
contradictions inherent in the peripheral participation in a global techni-
cal practice. For this reason, I look here at the use of English across a range
of contexts that I explored in my time in Rio, putting some flesh on the
theoretical skeleton presented in the previous chapter.

The Language of Software

Linguists use the term “diglossia” to refer to the situation where a single
social group routinely uses two different languages, with most speakers
being relatively proficient in both. In a typical diglossic system, the two
languages have different roles. One language, which linguists typically call
“high” or “H,” is used for formal communication as well as for high culture.
Another, “low” or “L,” is reserved for informal communication, especially
among close friends and family. Use of the high language connotes profes-
sionalism, education, culture, status, hierarchy, and commitment to larger
(national or international) institutions. Use of the low language connotes
intimacy, equality, and commitment to the local place.2

It would not be accurate to say that Brazilian society, or even more spe-
cifically the community of software developers of Rio de Janeiro, is diglossic
in its use of English if we use the word “diglossia” in its narrow linguistic
sense.3 While some Brazilians learn to speak English fluently, it is still a
foreign language in Brazil. In my time in Rio, I have never heard two Brazil-
ians speaking English to each other, except for the sake of a foreigner or as
a joke. Apart from my conversations with Lua’s authors, nearly all speech
present in this and subsequent chapters is my translation from the original
Portuguese. Written English, however, is omnipresent in the work of Rio’s
software developers, as are short spoken phrases, which may or may not
be altered to comply with Portuguese phonology. While such coexistence
of English and Portuguese is not diglossia in its traditional sense, it retains
some of its features: the high language (written English) can be used to
communicate and develop status and global links, while the low language
(Portuguese) builds local connections.

The Global Tongue 49

While linguistic literature on diglossia often focuses on the mechanics of
code-switching and second language acquisition, diglossia is nearly always
a power-invested phenomenon, and the social side of diglossia often can-
not be understood without considering how the two languages tie together
local power relations and external resources. In a typical case, proficiency
in “H” marks the individual’s status vis-à-vis the less proficient speakers,
becoming an instrument of exclusion. Such proficiency is often predictive
of the individual’s social status because it requires access to educational
resources available to only the privileged few. H also becomes important
for local power relationships by connecting proficient speakers to a power-
ful external community interacting in H, allowing them to draw on the
resources of this community. At the same time, however, such use of H
often underscores its speakers’ dependence on external resources and their
subordinate position vis-à-vis the group that defines the norms of H. Speak-
ers of H may often prefer to use L as a way of marking their opposition to
that group and their connection to the local community.

What has been said about the relationship between a “high” and a “low”
language applies to the quasi-diglossic relationship between English and Por-
tuguese among Rio’s software professionals. Proficiency in English (and espe-
cially the ability to speak it fluently) often reflects a higher socioeconomic
origin. At the same time, it gives developers access to crucial foreign resources,
further elevating their status by helping them acquire cultural capital in the
global world of software. It also, however, highlights their peripheral status
in a largely foreign practice of software development. They often downplay
such tensions: good software professionals are expected to display a global
perspective on the world and to accept the dominance of English without
any nationalistic qualms. At the same time, many of the interactions pre-
sented in this chapter show elements of resistance and the careful handling
of misalignments between the local and the global nature of the practice.

This quasi-diglossic relationship between English and Portuguese is just
one of the dimensions of the larger phenomenon that we can call “cultural
diglossia”: the situation where a particular social group is simultaneously
engaged in two cultural systems, which stand in asymmetric relation to
each other. In our case, it is, on the one hand, the system of joint activi-
ties localized in Rio de Janeiro (and more broadly in Brazil) and, on the
other hand, a global world of practice centered far away. The social dynam-
ics of cultural diglossia express themselves in subtle ways. The choice of
language, however, is often much easier to observe and discuss. For this
reason, a careful look at language is a good starting point for the broader
discussion of the reproduction of a professional practice.

50 Chapter 2

When looking at a developer’s choice of language, however, we must
remember that in many cases the individual developer has very limited
choice in the matter. English is not only intertwined with the culture of
software, but is also thoroughly embedded in its very technology. Software
programs are machines built of words (Samuelson et al. 1994). Addition-
ally, to achieve any nontrivial goals, a piece of software must work together
with other software. This compatibility is achieved through the use of the
right words—usually the right English words. Consequently, “programming
in Portuguese” often becomes either cumbersome or outright impossible.
For many of my interviewees, the idea of using Portuguese for writing pro-
grams falls somewhere in the range from “ugly” to “ridiculous” or even
simply unimaginable.4

To understand the extent to which English is intertwined with software,
let us have another look at the software snippet shown above. The snippet
contains two kinds of text. The text enclosed in “/* . . . */” (the first five lines)
and the three lines that start with “//” are comments. Such text is ignored by
the computer and is added solely to assist a human reader of the program.
Such text can be written in any language, though the programmer is usually
limited to the twenty-six-letter version of the Latin alphabet as it is used in
English.5 In the previous sample, the developer wrote all the comments in
Portuguese, although he had to forgo accents in words like “início.” (I use
“he” since all of Alta’s developers at the time were men.) The remaining
text, however, contains instructions for the Java compiler, a program that
converts those human-readable instructions into a much longer sequence
of more detailed instructions that can then be executed by the computer.
The developer had a lot less choice here—the instructions must be written
in such a way that the compiler would be able to understand them. (Such
instructions are meant to also be read by human programmers who will be
revising the program later, but the compiler is their primary “audience.”)

Three of the two dozen English words used in the instructions (“new,”
“private,” and “return”) are keywords (or reserved words) of the Java program-
ming language. Together with fifty-six other keywords, they have fixed
meaning in Java. Any Java programmer must know and use them. Most of
the remaining English words, while not part of the Java language per se, are
defined by a set of software modules that come with Java. They are avoid-
able in theory, but not in practice. Java programs create and manipulate
data entities (“objects”) that are assigned to (“instantiate”) specific “classes.”
Each class defines the operations that can be performed on the objects that
belong to it. Objects, classes, and operations are all given names (“variable
names” or “function names”), which the programmers can use to invoke

The Global Tongue 51

them. While the programmers can and do define their own classes for their
specific situations and can name those however they please, much of the
standard functionality is supported by classes that are packaged together
with Java. Not surprisingly, such classes and the operations associated with
them were named in English, by programmers working for Sun Microsys-
tems (split mostly between California and India).

For example, when the programmer needs to perform date calculations,
he can do this by obtaining an object of class “Calendar.” Since Java pro-
vides a variety of calendars, in this case the programmer chooses a more
specific subclass: “GregorianCalendar.” To customize the calendar for Bra-
zilian Portuguese, the programmer requests that the new calendar object
be created with a Brazilian Portuguese “locale.” To do this, he first creates
an object of class “Locale” and then refers to this object when making a
request for a new calendar.6 The end result is a command that includes
seven English words:

Calendar cal = GregorianCalendar.getInstance(new Locale("pt_BR"));

To rewrite this somewhat closer to normal English, the line says: “Create
a new Locale specification for Brazilian Portuguese (‘pt_Br’) and then use
this Locale specification to set up an instance of a Gregorian Calendar. The
resulting object will be a kind of Calendar and shall be named ‘cal.’”

The only point at which the programmer could opt for Portuguese is
when deciding on a name for the new object that is being created. In this
case he used a language-neutral abbreviation “cal,” that could stand equally
for “calendar” and “calendário.” The four names that he introduced in the
rest of the code (“weekConvert,” “weekday,” “start,” and “oldDate”) are in
English. The programmer could have chosen Portuguese names for them.
However, doing so would turn the code into an odd mixture of two lan-
guages, as the programmers often told me. It would also require the pro-
grammer to remember whether each particular object’s name is English or
Portuguese: is it “oldDate” or “dataVelha”?

As we will see in this chapter, however, the choice of language cannot
be understood just as a matter of simple practicality. Or, rather, the specific
logic of practicality that is invoked in a particular situation depends on
more subtle factors. I start my discussion with a few more episodes from
Alta. These examples present the use of English and Portuguese in relatively
unproblematic situations. I then look at the more complicated case of Lua,
a programming language developed in Rio de Janeiro, which until recently
had no Portuguese documentation. I follow this story with a discussion of
Kepler—a small project based on Lua, which straddles the two worlds in a

52 Chapter 2

yet more complicated way. (Alta, Lua, and Kepler are all explored in more
detail in subsequent chapters.) I then look at how the developers acquire
the knowledge of English, and discuss the social differences that English
proficiency marks. Finally, I look at some of the ways in which the develop-
ers express resistance to gringo dominance.

It’s Just More Natural

Looking at Alta’s code some time later, while working on a small task assigned
to me by “Fabio,” one of Alta’s managers, I did find examples of Portuguese
variable and operation names. A few days after that, as I was watching Fabio
draw a diagram of Alta’s next application, entering English field names like
“price” and “quantity,” I decided to ask him about the mix of languages
that I had seen in the code. Fabio seemed surprised. It’s supposed to be all in
English, he said. He then explained: The Portuguese names were just someone’s
mistake. It all should be in English, except for the database tables.

“Except for the database tables?” I made a surprised face. Yes, the Java code
should be in English, Fabio said again. But the database tables should be in Por-
tuguese. “Mauricio,” sitting at the adjacent table, turned around in his swivel
chair. “This is really stupid,” he said. Mauricio, in his late twenties, was one
of the developers on Fabio’s team; he usually stayed quiet, so I knew that
this had to be a topic he felt strongly about. Having class names and database
tables use different names makes no sense, said Mauricio. He explained that
there are many software applications that assume that the names of the
tables and classes correspond, and a mismatch between the database table
names and the Java class names is often a source of endless trouble.

The two started discussing why one could possibly want class names to be
in English and database tables in Portuguese. Mauricio’s position was that it
should all be in English, while Fabio explained that they simply did not have
a say about the database tables. Those were administered by “Intermercado,”
Alta’s large client, and had to be in Portuguese. “Why? Because the database
guys don’t know English? What are they doing there then?” insisted Mauri-
cio. Yes, Fabio explained, the database guys may or may not know English.
In either case, this was not for him or Mauricio to decide.

“But why should the code be in English?” I asked. “Good question,” said
Fabio. “I ask this myself sometimes.” But it is just more natural this way, he
explained. The programming languages themselves are in English.

Listening to Fabio’s comment about programming languages being
“in English,” I remembered a conversation that I had a week earlier with
Rodrigo Miranda, a coordinator of a Rio-based open source project whom

The Global Tongue 53

I introduced in chapter 0. In the early 1990s Rodrigo worked in software
translation. At some point a call came: Microsoft needed someone in Brazil
to translate Excel’s Visual Basic into Portuguese. Rodrigo could barely con-
tain his laughter when he was telling me the story. Yes, he said, they literally
wanted to translate all the keywords. They wanted to make it “se” instead of “if,”
for example. Despite the prospect of making good money quickly, Rodrigo
told me that he tried to dissuade Microsoft from doing this. When they
decided to go ahead with the project, however, he agreed to do it—the
money was too good to pass up. The Portuguese version of Visual Basic
failed miserably, much as Rodrigo expected it to. (The money he got for it,
though, paid for a new computer.)

I told the story to Fabio and Mauricio. Too young to have witnessed the
fiasco, they found it most entertaining, rolling their eyes. This must be one of
the stupidest ideas ever! they exclaimed at the same time. How would you even
do it? asked Fabio. How would you translate “DIM?” he continued, referring to
one of Visual Basic’s keywords. What does DIM stand for anyway? Dimension?
So, perhaps it would be “Dimensão.” This would be so strange and so verbose! I
responded by pointing out that “Dimensão” could be abbreviated just like
“Dimension” was—in fact, to the same “DIM.” I suppose, conceded Fabio.
But Portuguese just isn’t a good language for programming languages. The gram-
mar is too complex. What would you write in the end of the function? “Retorno”?
“Retorne”? “Retornar”? Fabio rattled off several forms of the Portuguese verb
“to return.” In English it all makes more sense, he concluded.

Fabio’s comments about the idea of using Portuguese words as key-
words in a programming language do not merely acknowledge the de facto
dominance of English in software, but also naturalize this dominance. The
fact that Alta’s programs are written “in English” becomes not a result of
a historical contingency—English being the language of the country that
emerged as the economic superpower after World War II—but rather a nat-
ural state of affairs having to do with the relative complexity of English
and Portuguese grammar. We need to note, however, that the explanation
simultaneously reserves a role for Portuguese, albeit outside the software
domain, in situations where its grammatical complexity (and, as my other
interviewees note, its poetic beauty) could be an asset. In this way, Portu-
guese is not altogether deprecated—it just has no place in software.

Lua: If or Se?

The question of whether it would make sense to use Portuguese keywords
in a programming language had also come up two months before my

54 Chapter 2

conversation with Fabio and Mauricio, when I was interviewing Roberto
Ierusalimschy, a professor at PUC-Rio, one of Rio’s premier universities. In
the early 1990s Roberto (following my interviewees, I will refer to him by
first name) and two of his colleagues designed a programming language
called “Lua,” ostensibly for the needs of a specific project being done for a
particular large client of Tecgraf, a PUC research laboratory where Roberto
worked at the time. By the late 1990s, Lua had become fairly popular out-
side Brazil for certain kinds of software applications. To understand Lua’s
success we need to look at how it got “disembedded” (Giddens 1991) from
its local context and became “portable” to the unknown contexts of future
use abroad. I explore this process of disembedding in much detail in chap-
ter 7. Here, however, I look briefly at a particular aspect of this disembed-
ding: Lua’s use of English.

“Lua” means “moon” in Portuguese. “In our language it is a very beau-
tiful word,” Roberto wrote on the lua-l mailing list in the late 1990s. This
name, however, is Lua’s only connection with the Portuguese language,
and a dubious one at that. “Lua” is also a pun on “SOL”—the name of Lua’s
predecessor; “SOL” means “sun” in Portuguese, but is at the same time an
English abbreviation for “Simple Object Language.” (The name is thus a
bilingual pun, reflecting the love of wordplay that permeates the software
culture.) At the time of our interview, Lua’s documentation was avail-
able only in English. All of several books written about Lua were written
in English. (The most popular one, written by Roberto himself, had been
translated into German and Korean but not into Portuguese.) Lua’s manual
became available in Portuguese only in September 2007, six months after
our interview and ten days after a Russian version was released. It perhaps
would not surprise the reader when I say that Lua’s keywords are all based
on English words. Or to put it differently, Lua uses “standard” keywords,
such as “function,” “if . . . then . . . else,” and “return.”

When the first version of Lua was being developed in 1993, the choice of
language was seriously discussed, if briefly:

Roberto: I remember that we discussed a lot about both error messages
and reserved words. There were people, even me, that talked about . . .
that maybe instead of “if” we should use “se” and use “enquanto” instead
of “while.” And we just decided that this is not English—this is reserved
words. Someone said that, I don’t remember who: those aren’t even quite
English words, even for English people they couldn’t . . . that they were
picked by European people who didn’t speak English properly. [Laughs.]
But anyway, so we decided to stick with the usual reserved words. And I
think that the error messages went together; they should be in English, it

The Global Tongue 55

would be strange to write “while . . .” and then get “Erro na linha . . .” So
maybe comments were in English for the same reason. I really don’t remem-
ber. I can maybe try to find some . . . but I think that I usually already wrote
many things in English.

Roberto’s story brings together a number of reasons for using English,
including the technical difficulties with using Portuguese, habit, a desire
for consistency, and a justification that English words that appear in code
aren’t really English. Combined, those factors convinced the authors that
using English made more sense.

Lua was, for the most part, originally developed for local use and people
who would program in Lua could be assumed to know Portuguese better
than English. As the authors of Lua repeatedly assert in publications and
interviews, Lua’s later success came as a major surprise. At the same time,
at the earliest stage of development the team made choices that left open
the possibility (however unlikely) of this success, preemptively disembed-
ding Lua from the local language, avoiding a tie that would have forever
limited its use to Portuguese-speaking places. I believe that such preemp-
tive disembedding is often driven by what I call “subvocal imagination”:
imagined futures that are treated as too unlikely to be publicly presented as
a rationale for action, but that nonetheless can affect action profoundly. I
discuss this notion in more detail in chapters 6 and 8.

The day after our interview, I received a message from Roberto, in which
he told me that after our conversation he went looking through old files,
finding that while Lua and SOL code were written “in English” from the
very beginning, test files for them were in Portuguese until 2003, over a
ten-year period. This distinction is easy to understand considering the pub-
lic nature of Lua’s code and the private nature of the test files; the practice
of using Portuguese for test files and for other “private” code appears to be
common among developers who use English for code that is more likely to
be seen by others. In some cases this appears to reflect the fact that writ-
ing in Portuguese is simply easier, even for those Portuguese speakers who
speak English quite fluently. They may therefore choose Portuguese in situ-
ations where the resulting “ugliness” of the code is not going to be observed.
When writing code for private use, the developers also do not need to worry
whether their use of Portuguese might be interpreted as showing a lack of
English proficiency. Using Portuguese in private code, however, can also be
a way of marking the code as private.

It is worth noting that the situation with Lua’s test files had to change
eventually, as Lua’s development made small steps toward the open
source development model. This transition demonstrates one of the new

56 Chapter 2

challenges that open source development brings to peripheral partici-
pants. Open source development blurs the line between public and private,
because the users of the software often come to expect to have access to the
author’s complete working environment rather than just the final product.
Reliance on the local language becomes problematic even for such things
as tests, since the open source logic demands that such code should also be
rendered public. After the users started requesting Roberto’s full collection
of test scripts, he eventually released them. While the scripts were originally
released as they were written, with all the Portuguese in them, he translated
them into English for the next release of Lua.

The Lua Book

Much like Lua’s code, its original manual of eighteen pages was also writ-
ten in English, as was the very first paper about the language, presented at
a Brazilian conference in 1993. The conference accepted papers in English,
Portuguese, or Spanish, and the choice of language did not make any differ-
ence at the time as to how the paper counted toward the researcher’s pro-
ductivity metrics. Nonetheless, there were several good reasons to choose
English. The first one concerned the larger audience that could be reached
by an English publication, or, rather the exceedingly small size of the Por-
tuguese audience:

Roberto: In Brazil maybe there are four or five people who are going to
read what I write. It’s not a problem of Portuguese, it’s a problem of any
language. You must write in a language that everyone can read, unfortu-
nately, or fortunately, because the number of people is so small. There is
no point of writing a technical paper in Portuguese, or in Spanish, or in
French, or in German, or in whatever language.

For this reason, Roberto nearly always wrote his papers in English. “I usu-
ally prefer to write papers in English,” he said. Earlier in his career, Roberto
explained, he used Portuguese for the relatively unimportant papers (“when
it was very fast”). Now he prefers English in all cases.

Roberto then mentioned a different factor, the technical challenges of
writing papers in Portuguese. Like most computer scientists in the United
States, Roberto uses a software product called LaTeX to write his papers.
LaTeX is essentially a programming language designed for typesetting
documents and, like most programming languages, it cannot easily handle
non-English letters or accents. “There are a lot of packages to solve that but
I do not have them installed properly,” Roberto explained. “Or sometimes

The Global Tongue 57

they are installed properly but I change the version and I only discover two
months, three months later that they are not working. Apart from emails
I almost never write anything in Portuguese.” English is thus intertwined
with the practice of academic computer science writing in a very material
way, being assumed by many of the tools on which the practice relies, not
unlike the way it is intertwined with the practice of software development
itself.

Nearly all publications about Lua were thus written in English. Around
1996 one such article, in a popular American computer programming mag-
azine, attracted a substantial number of questions, which led Roberto and
his collaborators to start a mailing list, lua-l. (No mailing list was necessary
before that since all users worked in the same place.) From the beginning,
most of the subscribers were foreign and the discussion was conducted in
English, though messages sent in other languages occasionally popped up
and were typically met with friendly amusement or curiosity rather than
disapproval. In 2002, when the community had grown substantially,
a question was raised whether a separate Portuguese list was needed or
whether the list should be declared officially “multilingual.” In response to
this discussion Roberto pointed out that Brazilians comprised only around
15 percent of the list. “Our second ‘minority’ are 10% of German speakers,”
he noted in parentheses. “Whether we like it or not, the only language we
can all communicate is English,” he concluded.

In 1999 the mailing list was informed that Roberto was working on a
book about Lua. “Do us poor language-handicapped folks in the States have
a chance of being able to read it?” asked an American list member. “I hope
so,” responded Roberto. “I am writing it as close to English as I can:-)”
The book was in fact written in English. When Programming in Lua was
finally ready in 2003, Roberto asked the list for ideas on how to publish
it. The list members responded with suggestions and offers to proofread
the book or to represent Roberto in the United States. (It was largely taken
for granted that the book would be published there.) Eventually, Roberto
self-published the book via a print-on-demand service that also acted as a
distributor and could thus satisfy the number one requirement: that the
book become available for purchase on Amazon.com.

Roberto’s announcement of the book’s availability on Amazon came
with a note in parentheses, saying that Roberto was trying to get a smaller
batch printed in Brazil to make the book available at a lower price. This
plan, however, never materialized. An attempt to get the book into some
of the Brazilian stores was also unsuccessful. The stores did not want to
buy the book from a foreign distributor, and insisted on ordering it directly

58 Chapter 2

from the “publisher” instead. Under the print-on-demand setup, this would
mean buying the books directly from Roberto, who would have to set up
a company to do proper accounting of sales and expenses. This ordeal of
starting a company is not taken lightly in Brazil: it is hard to start one,
expensive to maintain it, and nearly impossible to close. Foreign publishers
avoid this problem by maintaining their tax home abroad. Roberto could
avoid it by staying out of the Brazilian market and letting the potential Bra-
zilian readers just order the book from the United States, something many
of them are quite used to. In many ways, self-publishing the book in the
United States and making it available on Amazon.com might after all be the
most efficient way to reach Brazilian readers.

While one could not buy a copy of Programming in Lua in any of Rio’s
stores (not even in PUC’s own bookstore), I did manage to obtain my copy
in Brazil without resorting to Amazon.com. I simply asked for one at the
end of the interview. The book came from a small stack in Roberto’s office,
and I paid for it in cash. This local transaction exemplified a broader pat-
tern. While Lua’s success was dependent on both local and global ties, its
local ties mostly were (and still are) truly local, often limited to the small
network of Roberto’s students and colleagues, with relatively few connec-
tions at the national or even city level.

By the spring of 2007 the book had been translated into German and
Korean (and later also into Mandarin), but no Portuguese translation was
available (as is still the case today). Rodrigo Miranda, Roberto’s former
PhD student and a tireless promoter of Lua, was trying unsuccessfully to
organize a translation. A half-completed translation by his friend “Renato”
died with Renato’s hard drive. Rodrigo had not yet had the courage to tell
Roberto about the loss. Roberto was hardly counting on this effort to come
to fruition, however, and had few hopes for successful publication of the
translation if it were ever finished. He would love to have the book trans-
lated, he explained, but he was not going to translate it himself and had
little interest in begging others to do the work. After all, he did not have to
do this to get the book published in German or Korean.

Kepler’s Wiki

Despite its notable popularity, Lua is a niche language, which has gained
substantial popularity in a particular set of applications, typically those
requiring performance, simplicity, and close interaction with software writ-
ten in C. In California, Lua is primarily used in the development of com-
puter games or software for small devices. Both of those applications are

The Global Tongue 59

too specialized for Rio’s small market, which depends primarily on building
web applications for local businesses. Rodrigo Miranda, a former student
of Roberto, dedicated a decade of his life to the uphill battle of turning
Lua into a platform for developing web applications. In 2007, I spent four
months following Rodrigo’s project (named Kepler) from inside his office
in Copacabana—a story that I tell in more detail in chapter 8.

In early March, after a week in Rodrigo’s office, I was looking for more
hands-on involvement with the project. (The project was so highly “vir-
tual” that just observing what was happening in the “real world” was rather
uneventful.) I decided to start by helping with the project’s web site. Over
the next two weeks, Rodrigo and I had some long discussions about what
needed to be done. One of the things that Rodrigo asked for was to have the
web site use a wiki, allowing visitors to edit the content.

A couple of weeks after our first discussion about the web site, I realized
that having designed most of it, we had not thought at all about where
exactly the Portuguese version of the documentation would go. The existing
Kepler web site did have Portuguese documentation, though it was spotty
and the reader was often sent back to the English version. I did remember,
though, that Rodrigo had talked about the need for Portuguese documenta-
tion and even that a software developer I had not yet met—“Rodolfo”—was
working on it. Running the web site as a wiki was going to create additional
challenges: we would need to figure out how to keep the English and Portu-
guese content synchronized, even as the users would be potentially editing
each version separately. I brought this issue up while talking to Rodrigo
over instant messenger. His response confused me. Rodrigo seemed surpris-
ingly disinterested in the Portuguese documentation, even as he reaffirmed
that Rodolfo was working on it. There was no need to worry about whether
the two versions would remain synchronized, he told me, though perhaps
Rodolfo or “the community” could take care of it.

It was only a few months later that I managed to fully make sense of
this conversation. Kepler was supported by FINEP, a Brazilian agency that
funds research projects in industry, and by “Nas Nuvens,” a company that
belonged to Rodrigo’s brother “João,” which was cosponsoring Kepler’s
development. Nas Nuvens hoped to eventually offer Kepler-based solutions
to its local clients and needed documentation in Portuguese. For this rea-
son, it had requested FINEP funds for writing Portuguese documentation as
one of Kepler’s subprojects. There also was an extra benefit: subcontracting
documentation work to Rodolfo created an opportunity to build a relation-
ship with Rodolfo’s organization, a research institute near Rio de Janeiro.
As I learned later, Rodolfo had recently sent Rodrigo a draft, but Rodrigo

60 Chapter 2

had not found time to read it. In April 2007, Portuguese documentation
had not yet become a high priority: Kepler had to be finished first, and for
that to happen it needed the attention of high-end developers who could
contribute to the project. This meant documentation in English.

A week after our discussion over instant messenger, we found ourselves
rethinking our initial choice of the wiki software. During that deliberation,
I decided to try writing a simple wiki engine in Kepler—after all, Kepler
was a platform for web applications. A few days later, with the initial ver-
sion of the software in hand, we revisited the question of Portuguese pages,
talking about ways of interlinking the Portuguese pages with their English
equivalents.

The URLs of wiki pages are usually based on their titles, which makes it
easier to create links to them. The URL of a page called “Introduction” would
end in “/Introduction.” If the same were true for Portuguese pages, then
the corresponding Portuguese page would show up under “/Introdução.”
This created a minor challenge for figuring out how to cross-link the cor-
responding pages in the two languages. I asked Rodrigo what he thought.
Rodrigo seemed shocked at the very idea of using Portuguese in URLs. He
wanted simple correspondence between the pages, and he did not want
any accents in URLs. And he would not want pages with names like “Intro-
ducao.” Rodrigo carefully enunciated the hard “c” and the “a” of “Introdu-
cao,” to show the effect of the missing accents by making the end of the
word sound like English “cow” rather than like “sung” for “-ção.” The page,
he continued, should be called “Introduction.” Calling it “Introdução” or
“Introducao” would be just as ridiculous as using Portuguese words for Lua
or Kepler keywords. I noted to myself that using Portuguese keywords in
a programming language apparently set a benchmark for “ridiculous” for
Rodrigo, but kept the thought to myself, instead turning the conversation
to the remaining practical issue—how to insert links to English page names
in the text of Portuguese documentation.

Another week later, Rodrigo and I were about to leave the office when we
got chased by João, who wanted to know about the state of the Portuguese
documentation. Rodrigo replied that he had glanced at Rodolfo’s docu-
ment and that it was good enough for now. (The FINEP project was not due
for another nine months.) “You are now talking like Roberto,” said João in
frustration. Rodrigo got defensive. It’s not quite the same, he said. “I am not
saying that there shouldn’t be Portuguese documentation,” he explained.
There were just better things to worry about. The elevator arrived, giving
us a chance to escape and leave João behind to worry about the Portuguese
documentation alone.

The Global Tongue 61

Kepler’s complicated relationship with Portuguese documentation
reflected the complex way in which Kepler connected to two different
worlds: first, the local world of Brazilian clients and partners, and, second,
the foreign world of software development in which Kepler was trying
to find a place. Roberto’s situation was simpler. As a Brazilian academic
researcher, Roberto was shielded from the local business world. For him,
Portuguese documentation was a luxury, “a nice-to-have feature,” to use
a programming term. Rodrigo’s approach, on the other hand, puzzled
me for many months, as Rodrigo went back and forth between spending
time to figure out exactly how the Portuguese documentation would work
and seemingly questioning any need for it. As I came to see it eventually,
for Rodrigo, the issue of Portuguese documentation was a balancing act
between conflicting commitments. Kepler’s destiny was tied to that of Nas
Nuvens. As we will see shortly, some of Nas Nuvens’s programmers could
read English only with difficulty. Additionally, like many other software
companies in Rio, Nas Nuvens also was dependent on local clients and had
to build other local alliances. Yet the small funds that the clients and FINEP
could provide did not allow Rodrigo to obtain what he needed most for
his project: expertise. He looked for such expertise in two places: abroad,
by trying to recruit the invisible programmers from the global Lua com-
munity, and among people at PUC, many of whom considered it silly to
spend time on Portuguese documentation, not to mention worrying about
accents in page names.

Learning English

The fact that Roberto Ierusalimschy’s Programming in Lua was available only
in English did inconvenience some of the developers working with the lan-
guage. For “Luciano,” one of the programmers at Nas Nuvens, Programming
in Lua was the first and the only (as of 2007) book he had read in English.
The task took him a long time, he told me, and he was reluctant to try it
with another full-length English book. “It takes forever,” he said.

Luciano was twenty years old at the time of our interview and came
from a lower-middle-class background.7 He went to a public school, where
he had English classes, which he said had taught him nothing. (“English
for twelve-year- olds. Doesn’t count.”) What did teach him English, he said,
were role-playing games (RPGs) on a computer:

Luciano: Games, RPG games, you know? I played a lot—the RPG games.
The games gave me the minimum and then . . . For example, to buy things,
you need to apply [. . .] the word “buy,” and the word “sell,” you know? [. . .]

62 Chapter 2

If you need to open this door, it’s “open the door.” You apply: “open the
door.” [Pause.] It’s . . . it’s buy [says in English], right?

Luciano was neither the first nor the last person to credit computer games
for an introduction to English.

Since computer games serve as a common entry point into the tech world
for many Brazilian men, Luciano’s learning of English was from the very
beginning fueled by his growing involvement with tech culture. Around
the same time he started playing computer RPGs, Luciano began fixing
computers as a part-time job, then got interested in the Internet, got him-
self a computer, and started learning HTML. He got a job in tech support,
and started learning Linux and PHP—the latter a popular programming
language for web applications. His source of learning was translated books
and online forums in Portuguese (“some forum mentioned PHP,” he says).
It did not take him long to discover, however, that most of the material he
needed was in English, and he started trying to make sense of the English
materials on the web.

At the time of our interview, Luciano frequently used English materials,
but remained selective, considering the difficulty of using such documents
against the expected value of the information contained in them. When
looking for an answer to a specific question, English would often be his
choice. When wanting to learn a topic in more depth by engaging with a
longer text, however, he would often seek something in Portuguese. “With
English it is really easy for me to get lost,” he explained. “One word will
totally change the meaning of everything. I can’t be sure I got it right.”

The need to solve practical problems and an interest in engaging with
the tech culture are not the only motivations for learning English. The lan-
guage is also widely seen as more generally providing access to the larger
world. On many occasions, for example, I heard the developers say that
they learned English because they wanted to understand the lyrics of rock
or heavy metal music. (A handful in fact claimed to have learned the lan-
guage primarily through lyrics.) Others talked about American movies or
non-computer-based role-playing games. (In the case of the latter, they
would of course speak Portuguese to fellow players, but would often have to
rely on English manuals for the game.)

This connection between English, games, software, and the larger
“global” culture illustrates the parallel replication of practice noted in the
previous chapter: re-creation of the practice of software in Brazil is in this
case aided by the fact that some of the skills that this practice requires, such
as English proficiency, are also employed in other activities. This, of course,
has much to do with the fact that software documentation, games, and a

The Global Tongue 63

lot of the music that Brazilians listen to tend to originate from roughly the
same part of the world.

While Luciano had picked up a good amount of English by the time we
met in 2007, his English skills were lower than those of many other devel-
opers I met in Rio, who could often not only read English but also speak
it with relative fluency. While a few of those developers claimed to have
learned English on their own, and a few others credited exceptionally good
private schools, the most common pathway to English proficiency involved
private English courses. For well-off Rio families, enrolling their kids in such
courses is an obvious choice, and such kids typically start their course well
before college. (Some of my interviewees started private English courses as
early as age ten.) Those coming from families with fewer resources have to
wait until they can afford the course, in terms of both money for tuition
and the time taken off from work or undergraduate studies.

One of the other developers at Nas Nuvens told me:

Pedro: Because what I did is I didn’t do my undergraduate program in
four years. I did it in four and a half years. I did it in four and a half because
I decided to reduce the workload to study English. So, I reduced the load
to study English, to study English for a year and a half, with a commercial
English course. If you want, we can talk. [Says in English. Laughs.] My Eng-
lish is still, still . . . I understand better than I speak. [. . .] Because during
the sixth semester I started thinking: if I don’t study English I won’t be able
to do a master’s degree. [. . .] Because with the master’s program here—they
[expect] that a person would be fluent . . . not fluent, but would be capable
of reading. [. . .] Must know to read and write English.

As Pedro noted, while Brazilian universities rarely teach English, the better
ones frequently expect the students to be able to read it, and this is espe-
cially true for graduate programs—even more so in computer science. An
investment in English thus offers not just an opportunity for drawing on
remote resources but also access to local educational resources. In Pedro’s
case, the investment seemed to pay off: since our conversation in 2007, he
successfully entered into a master’s program at PUC, completed it, and is
currently contemplating a PhD abroad.

The flip side of opportunities offered by English is the stigma that is
often associated with the lack of English proficiency. To a large extent, this
may be a matter of simple realism: not being able to read technical docu-
ments in English does make it more difficult to stay abreast of computer
knowledge. At the same time, English proficiency also functions as a marker
for class distinctions, since it requires either access to financial resources,
cultural capital available to the children growing up in upper-class families,

64 Chapter 2

or both. Mentioning that a particular developer “cannot even read English”
consequently becomes one of the worst assessments, one that connotes a
lot more than a simple lack of English proficiency.

It is perhaps not surprising that I often found my interviewees quite
reluctant to admit their use of Portuguese. Portuguese books that I saw on
developers’ desks inevitably turned out to be bought for the sake of being
lent to friends or colleagues. To the extent that developers were willing to
discuss their difficulties with English, they often appealed to my under-
standing as a fellow nonnative speaker of English. “Do you really want
to know?” one of my interviewees, “Edmundo,” asked me after I inquired
in what cases he used Portuguese in Google queries. (Edmundo spoke rea-
sonably good English and we even conducted a part of our interview in it
before switching to Portuguese.) “Do you really want to know?” he asked
again. He then finally said: “When I am too tired to write in English, then
I enter it in Portuguese.” Edmundo chuckled. “Because it’s not my native
language,” he then explained. “It’s not my native language. It’s like you.”
He asked me how many years I had lived in the United States. I told him it
had been around ten years. “Ten years, damn!” said Edmundo. “And still
reading in Russian is much easier for you than reading in English.”

The Speakers and the Nonspeakers

A few months before my interview with Luciano, I was sitting in the office
of Nas Nuvens, in the room that I shared with Rodrigo Miranda, when
Luciano knocked on the door. He stepped inside and said something to
Rodrigo. Rodrigo responded by pointing to me as the person to ask. As it
turned out, the question concerned Linux and I seemed to be the resident
Linux expert. After a brief discussion, I concluded that the question was
out of my competence and suggested that Luciano ask “Alan,” an active
Kepler developer who used to be at PUC but recently moved from Rio to
Porto Alegre. I remembered, however, that a few weeks earlier Rodrigo had
told me that he wanted to start running Kepler as a “real” open source proj-
ect, and that this would involve routing more communication through the
mailing list and relying less on face-to-face interactions or private email. So
I told Luciano that Rodrigo would probably prefer if he asked this question
on the Kepler list rather than emailing Alan directly.

Rodrigo nodded. Luciano looked at him in a bit of disbelief. You are not
going to make me do that, right? said his face. Yes, Rodrigo responded to Luci-
ano’s silent question. Write to the list. I did not catch Luciano’s response,
but the prospect of writing to a public mailing list in English did not seem to

The Global Tongue 65

appeal to him.8 I was about to volunteer to help Luciano compose the email
when Rodrigo sighed and said: “Write it, email it to me, I will translate it for
you.” Luciano nodded and left. A bit later, a message from Luciano arrived
via the mailing list.9

A few weeks after the incident with Luciano’s email, I was at Nas Nuvens’s
office again, slouching in a beanbag (or puff, as it is called in Brazil), while
Rodrigo stood in front of me. I was trying to explain a problem I thought
we had with a code example we were working on together. I was speak-
ing Portuguese and I stumbled as I searched for the Portuguese equivalent
of “smart quotes.” Rodrigo was following my line of thought, however,
and completed my sentence for me: “smart quotes.” He used the English
phrase, but pronounced it as if in Carioca Portuguese: “ishmahchi quotish.”
After we concluded this discussion, I switched to English and asked Rodrigo
why he would say “ishmahchi quotish,” if he knew how to pronounce this
phrase in English.

Rodrigo sat down on the puff next to me, leaned back, and took a deep
breath. Many people don’t know enough English to know how to say it right, he
said after a pause. I understand this, I responded, but you know how to say
it. Why do you say it this way? My English is not so good, actually, he said.
“This is ridiculous,” I thought to myself. Rodrigo’s English was almost as
strong as my own. (Neither of us was a native English speaker, after all.)
Listen, I said, maybe your English is not perfect, but you know how to say “smart
quotes.” It is clear, I continued, that people who are fluent in English often
say English words with a strong Portuguese accent when using them in a
Portuguese sentence.

Okay, said Rodrigo, I’ll tell you why. It’s because Luciano was in the room. I
tend to speak this way when there are “nonspeakers” in the room, he explained.
There is a thing about using English in a “politically correct” way, he con-
tinued. When you use English, you don’t want to make it sound like you think you
are better than other people and if you speak overly correct English people might
think that. If I say “ishmahchi quotish,” it makes me just one of the guys. It’s a
way of “making fun of English, making it less elitist,” he concluded. Somewhat
in disbelief, I asked Rodrigo if he had just come up with this theory on the
spot. No, he replied, I first thought about this twenty years ago, in high school.

A linguist would disagree with Rodrigo’s explanation, pointing out that
saying “ishmahchi quotish” can be explained as simply a matter of uncon-
sciously adjusting the pronunciation of an English phrase to the phono-
logical context of the Portuguese sentence into which it was inserted (see
chapter 6 in Grosjean 1982). What is notable, however, is that the ques-
tion I asked was something Rodrigo has thought about. The divide created

66 Chapter 2

by the differences in English proficiency cuts both ways. In some cases, a
proficient English speaker who spends much of his time interacting with
those who speak it less may want to downplay his English skills, to simply
be “one of the guys.”

The World Language or the Gringo Language?

I was at Nas Nuvens when an email arrived from Rodrigo, sent to me, his
friend Renato, and the mailing list that includes all of Nas Nuvens’s pro-
grammers. It was a link to a blog post entitled “No Mundo da Lua.” The
Portuguese title was a pun—it could be translated as “In the World of Lua”
or “With Heads in the Clouds” (literally, “in the world of the Moon”). The
blog post lamented the fact that Lua was unknown in Brazil and that Pro-
gramming in Lua was available in English, German, and Korean, but not in
Portuguese. Ironically, it then directed readers to an article about Lua in the
English Wikipedia.

The incident left me curious about the relative length of Wikipedia articles
about Lua in different languages. I spent some time looking at them, compil-
ing a table.10 I was not particularly surprised to see Portuguese below Korean
and Spanish. Rodrigo walked into the office just when I was getting the word
count for the Esperanto version. I asked him to make a bet: would the Espe-
ranto article on Lua be longer or shorter than the Portuguese one (visually
they appeared quite similar). Rodrigo bet on Portuguese, without too much
excitement. The Portuguese article did turn out to be longer, though just
barely. I announced the result to Rodrigo. He looked at the Esperanto article
in disbelief and seemingly a bit irritated. I just don’t get it, he said.

As it turned out, Rodrigo was not irked by the fact that Portuguese nearly
“lost” to an invented language, but by the fact that people waste their time
on Esperanto. “Anyone who can speak Esperanto can also speak English,”
he explained. If they can speak English, why do they bother with Esperanto? I
tried to summarize my understanding of the motivation behind Esperanto:
some people believe in having a neutral language to communicate in. We
continued the conversation as we headed out to get some food. I tried a few
other arguments that I could remember from a book on Esperanto that I
had read back in the Soviet Union. Rodrigo was not fully convinced.

I speak English because it is practical, explained Rodrigo. A while back I
figured out that I could only learn one foreign language. English was the best
option since that was the language spoken by the most people. I asked him why
he did not learn Chinese, if the number of speakers was the determining
factor. True, Rodrigo agreed, but Miami was closer than China. He added

The Global Tongue 67

something about McDonald’s. There you go, I said, it was not about the
number of speakers, but about McDonald’s, Miami, and Disney World. Or,
to put it differently, it was about cultural dominance. If Buddhist temples
were more important to you at the time than McDonald’s, I concluded,
maybe you would have tried to study Chinese after all, alluding to Rodri-
go’s Mandarin-speaking Buddhist friend.

Sure, agreed Rodrigo. But English is not the same as the United States. In
some years, he continued, the United States will no longer play a dominant
role on the world stage, but English will still be the main language. It has
nothing to do with the United States or with its culture. “The United States
of Canada” will be mostly Spanish-speaking anyway, and nobody is going
to care what people speak in “Jesusland,” he said, referring to a 2004 US
election joke I had told him earlier, which envisioned an alternative divi-
sion of North America. English will thus no longer be seen as the language
of the United States, just a means of international communication.

Rodrigo was speaking in a somewhat humorous tone, and his words
seemed to be carefully chosen to express neither hope nor disappointment
at the eventual demise of the United States that he was foretelling. He talked
as an indifferent, if curious and somewhat amused, observer. This was far
from the only time when the future demise of the United States came up as
a conversation topic during my time in Brazil, however.

About a month later, I was having lunch with a group of Alta program-
mers. Having talked about Linux music players and recent gadgets on the
way to the restaurant, we made our way through a number of nerdy top-
ics, arriving eventually at the issue of measuring temperature in Fahrenheit
degrees. How stupid is that? said one programmer. Others nodded in agree-
ment. The whole world uses the metric system, except for the United States, he
continued. Why can’t they act like a normal country? Others nodded again.
And then we end up using the stupid American measures too, interjected another
developer. Like measuring monitor sizes in inches! (Brazilians measure TV and
monitor sizes in “polegadas,” a term that otherwise comes up only in trans-
lated books.) But one day the United States will decay, and perhaps the idiotic
measurement system will facilitate this.

“I hope,” said another developer, Marcos, “to live long enough to see
three institutions go down. The first one is the United States. The second
one is Rede Globo, which won’t take that long. The third one is Micro-
soft.” Marcos then moved on to stronger imagery, talking about how each
of those needs to be “destroyed.” (The picture of destruction was painted
most vividly for Rede Globo—the country’s main news network that mid-
dle-class Brazilians love to hate. The disdain they expressed for the United

68 Chapter 2

States seemed bleak in comparison.) Other developers made supporting
comments regarding all three. Nobody seemed to question that this was
about the right list. The conversation did not linger on this topic for very
long, however. After a few clichéd (and seemingly pro forma) curses toward
Microsoft, the discussion moved to the activities of the Gates Foundation,
then quickly to finance, and the rest of the lunch was spent talking about
personal investment in stocks.

Open expressions of hope for the “destruction” of the United States are
not something a US-affiliated researcher hears every day, of course. What I
did hear regularly, however, were the more mild references to gringos, typi-
cally accompanied with the lightest touch of resentment, and immediately
retracted upon any interrogation. From my first days in Brazil, I was contin-
uously surprised by the extent to which the people I interacted with closely
(software developers or not) highlighted my Russian origin when present-
ing me to others, bringing up my connection to the United States only
when wanting a joke at my expense. (The situation was a bit different in the
more formal interactions, where being “from the United States” was more
valued, though even there “from Berkeley” or “from California” seemed
to be preferred.) While part of the preference for seeing me as being “from
Russia” rather than “from the United States” no doubt had to do with the
curiosity toward a distant and somewhat mythical country, it seemed clear
to me that such identification was also meant to allow me to not be seen
as “a gringo.”

The resentment toward gringos, however, is never expressed as resent-
ment toward English among the software professionals that I interviewed.
Or, to be more precise, it is never expressed as resentment toward English in
the context of software. Lamenting the inappropriate love of English among
Brazilians broadly is more common. In one of our conversations about Lua,
for example, Roberto talked about Brazilians’ preference for foreign things in
general. “People here love to use English phrases,” he said. “In the beginning
of the nineteenth century everyone loved to speak French. In the beginning
of the twentieth century it was English but from Britain. Now it’s English
from America.” This love for all things foreign, however, should not be con-
fused with their use of English, point out Brazilians working with software.
The latter is an entirely practical affair. And in the near future their use of
English might have nothing to do with the United States anyway.

The situation with language here reflects a broader pattern. As I show
in subsequent chapters, being located at the periphery often leads to a lack
of cohesion. Peripheral actors all too often feel “stuck” in the wrong place,
with the wrong people. Managers say they can get nothing done in Bra-
zil because of the incompetence of the employees. Programmers say you

The Global Tongue 69

cannot get anywhere because of the clueless managers. Both blame the gov-
ernment and the clients. The clients and the government find their reasons
to be dissatisfied with both the workers and the managers of the IT firms. It
is in this context that the actors then accuse others of an irrational prefer-
ence for foreign things, while stressing that their own efforts to establish
direct links to the outside are simply a matter of realism.

We must remember, of course, that the distinction between the “prag-
matic” use of English and its symbolic use is sometimes real. Highly edu-
cated individuals like Roberto and Rodrigo (as well as many of my other
interviewees) are in fact sufficiently worldly and global (at least in com-
parison with many people around them) that they do not usually need
to show their worldliness to others—or, rather, they can do this in subtle
ways. Their command of English is sufficiently obvious that they do not
need to use it in front of others just to make a point (though this always
remains an option). In fact, as we saw earlier, they may be more concerned
with how to fit in to the world of nonspeakers.

Use of English can thus sometimes be a pragmatic choice, a matter
of reaching the largest audience, and at other times a way of establish-
ing social status and flaunting connections with the larger world. It can
also mark local connections (between the members of the educated elite or
between engineers sharing the same jargon), or draw a distinction between
those with and those without education. Use of Portuguese can similarly
mark connections or boundaries. As we will see later, much the same can
be said about many other types of cultural codes.

* * *
In this chapter we looked at the place of English in the practice of Rio’s soft-
ware professionals, visiting several of the contexts that are explored in more
detail in some of the later chapters. We saw that English is accepted by
the developers as the professional language of software, even as it remains
unambiguously a foreign language in Brazil. English provides develop-
ers with an opportunity to create global links, allowing them to draw on
remote resources. Those resources include not only written materials, but
also the foreign software on which the developers build their work. Such
software is intertwined with English to such an extent that the idea of pro-
gramming “in Portuguese” becomes nearly unimaginable for many of my
interviewees. For some, English also provides an opportunity to actively
reach out and engage with foreign members of the practice and to recruit
them for the developers’ own projects.

As much as it can link, English can also divide. Because English profi-
ciency varies among software professionals, being strongly associated with
socioeconomic class, heavy reliance on English can introduce language

70 Chapter 2

barriers within the local community. Such barriers can be symbolic, mark-
ing proficient English speakers as standing apart from the nonspeakers.
They can also be simply practical, depriving those who lack English pro-
ficiency of products of the English-mediated work by others in their local
community. Such barriers affect most obviously those who are left out due
to their lack of English skills, but they can also become a problem for the
English speakers who face a reduced pool of potential collaborators. Ulti-
mately, those boundaries are often bridged by passing through the centers
of the software world: Brazilians wanting to learn Lua would need to learn
English.

The daily use of English, generally taken as unproblematic, takes place
in the context of a somewhat more complex system of attitudes toward the
United States—a country that is often admired but is also criticized and
even scorned. The developers often resolve the resulting tensions by dis-
cussing English as the professional language of the global software commu-
nity, pointing to its use beyond the United States. They stress that they use
English not just for communicating with people in the United States and
Britain, but rather to engage with software developers around the world—
speakers of German, Finnish, and Polish. They occasionally mock those
Brazilians who use English out of love for all things American. Their own
use of English, they stress, is a matter of global pragmatism.

The interactions that surround the use of English illustrate a number of
points that apply more broadly to peripheral participation in a global prac-
tice. Lua’s use of English, for example, illustrates the broader notion of dis-
embedding—Lua’s separation from its local context would later enable it to
travel globally. We saw the parallel replication of practices, with the devel-
opers’ learning of English facilitated by the fact that English does not just
serve as the language of software, but rather provides access to many other
English-mediated practices. We saw that Brazilian users of Lua would likely
need to approach it through English—but they will also likely need to have
Programming in Lua physically shipped to them from the United States.

While investigating the use of English by my Brazilian interviewees, we
looked at how they come to learn the language. The next chapter looks
more broadly at the process of becoming a software developer. After that I
take a look at the larger world of software entered by the developers. (I post-
pone this presentation in recognition of the fact that the young “nerds”
we will meet in the next chapter do not always know what kind of world
they are entering.) I then return to Alta, Lua, and Kepler in later chapters,
looking at each as a different potential configuration of local and global
commitments.

3 Nerds from the Baixada and Other Places

“Since I was quite a nerd, I spent most of my time in the computer lab,”
said Mauricio, talking about his high school years while answering my
question about how he became a programmer. The word that Mauricio
used to describe himself was a borrowing from English, just like many of
the other Portuguese words related to software. When written, this word is
spelled in Portuguese just like in English: “n-e-r-d.” When used in speech
in Rio, however, its pronunciation is normally adapted to the phonetics
of Carioca Portuguese, resulting in a sequence of sounds that would likely
be unrecognizable to most English speakers: “NEH-jee,” with a somewhat
harder “H” than in English. It has roughly the same meaning as its English
cognate, though with a heavier connotation of computer use and often a
more derogatory feel.

When I asked Mauricio to explain what he meant by “being a nerd,” he
seemed puzzled by my question and replied with another English word:
“geek,” this time pronouncing it just as in English. He liked computers a
lot, he explained. He then added: “I wasn’t a very social person. I spent
more time installing programs than doing other things.” For Mauricio and
for many of my interviewees, “nerd” is a basic concept and my questions
about its meaning were quite often met with a degree of disbelief. They
must have been particularly puzzling coming from an interviewer who
knew how to program and gave many signs of being a nerd himself. Surely
I would know that nerds are people who are not very social and spend a lot
of time with computers.

As suggested by Mauricio’s example, this simple term often appeared to
carry in it a seemingly simple answer to the question of how one becomes a
software developer. For many of my interviewees, software work is simply a
natural career choice for a nerd. But how does one become a nerd then? For
many developers, this seemed to be silly question too. One does not become
a nerd. It is just something you are, something you discover about yourself

72 Chapter 3

in childhood. Some developers argued that nerds are actually born with
different brains, perhaps with a mild form of Asperger’s syndrome. Looking
at developers’ stories more closely, however, reveals that becoming a nerd
is best understood as a process of a gradually deepening engagement with
a world of practice. I explore this process and the eventual transition from
being a childhood nerd to a software professional in this chapter.

Even though being “not very social” is a key part of many developers’
definitions of being a nerd, the process of becoming a nerd (and later a
developer) cannot be understood without considering the individual’s
engagement with other people. Talking about his nerdy high school years,
Mauricio told me the following story:

Mauricio: He [the teacher] would come, give a class, and let people go
and the class would go to play soccer. The whole class would leave and we
would stay there in the lab. The thing is that Doom came out, so . . . The big
thing to do was to get a mouse and break it to make a modem cable. To play
Doom against . . . [each other]. [. . .] The mouse had the right connector—
serial. [. . .] It was cheaper to get a mouse, break it and make a cable. It got
to a point that we had so much practice with this . . . We would pull it out
of the mouse [picks up an imaginary mouse, rips off its cord and removes
the imaginary insulation with his teeth], connect the wires, attach . . . It
took less than five minutes to make a cable.

Mauricio presented the story as an illustration of the idea of not being
“social.” (He later explicitly contrasted this to the “social” pastimes of his
peers: “playing football, going to the beach, dating.”) Yet, he repeatedly
talked of “we.” Mauricio’s learning how to convert a computer mouse into
a do-it-yourself serial cable may seem like an example of “not being social”
only if we ignore the fact that he and his friends practiced this skill in order
to connect their computers and play together rather than individually.

Growing up as a nerd is not the only way to become a software devel-
oper and I explore some alternative pathways at the end of the chapter.
This particular path, however, is not only common but is also important
because this is how one is supposed to arrive at a software career. Member-
ship in a world of practice often implies acceptance of a collective explana-
tion of why the members engage in it and what makes them choose this
particular practice over alternatives. Such explanations may vary between
the different worlds: for example, the practice can be understood by people
who engage in it as a way of making a living without sacrificing freedom of
thought (Willis 1981 on manual workers), as service done for the benefit of
other people (Orr 1996 on Xerox technicians), or as disciplined and honest

Nerds from the Baixada and Other Places 73

work (Lamont 2000 on white working-class men). In the case of software
development, however, the normative answer usually stresses a passion for
software born out of childhood fascination with computers. Those who
lack such passion are usually careful not to advertise this fact. The role of
passion, therefore, must be understood simultaneously as a matter of real-
ity for many developers and as a matter of mythos of the community as a
whole. It becomes important to keep in mind the stratifying effects of this
mythos, as it celebrates the experiences of some members over those of oth-
ers, often reinforcing boundaries of class, gender, and geography.1

Child nerds who take their early steps toward a software career by play-
ing with computers rarely know where exactly this road will take them.
One of my interviewees, “Célio,” working as a systems analyst for a Rio
office of a foreign company at the time of our interview, recalled develop-
ing an interest in computing when he got an Atari video game at age six.
“So I decided I wanted to do that for my life,” explained Célio. “Though I
didn’t know what ‘that’ was.” The understanding of the nature of “that”
which they are joining comes only later and gradually. One of the aspects
of this “that” that becomes fully apparent later in their lives is the eco-
nomic and geographic structure of the world of software.

To facilitate the presentation of the developers’ own unfolding under-
standing of this structure, I do not present in this chapter my own take on
it, reserving this discussion for the chapter that follows. Even so, however,
it is hard to miss the way in which the developers’ entry into the world of
software is affected by their position on the world map. We will see the
young nerds entering the world of software development in a particular
place and from a particular place. They enter the world of software in Rio
de Janeiro, in the sense that most of them will practice software in this city
for most of their lives. Their experiences of the software world will often
be experiences of the software world in Rio de Janeiro. They also, however,
enter the world of software from Rio de Janeiro (and its suburbs), as they
start to understand early on that the local world of software is but a minor
site in the larger, global world. For this reason, future developers must find
ways to transcend—to the extent that is possible—the limits of the local
place, becoming members not just of the local software community, but of
this larger world as well.

Hanging Around, Mapping Interrupts

“Zé Luís,” who also goes by an English nickname “Jason,” was in his early
thirties when I met him in 2007. Like the majority of my interviewees, he

74 Chapter 3

had lived his whole life around Rio de Janeiro. Like many other software
developers with a lower-middle-class background, Zé Luís grew up on the
outskirts of Rio, in the area called known as “Baixada Fluminense.” In his
case it was Nova Iguaçu, one of the larger municipalities in the Baixada,
forty kilometers northwest of Rio. (Figure 3.1 shows the relative location
of the different part of the Rio metropolitan area.) Zé Luís described Nova
Iguaçu as “a peripheral city, in a third world country”—a description that
would probably also fit other municipalities in the Baixada.

Like many other software developers his age or younger, Jason started
his software biography with his childhood:

Yuri: And how did you begin working or doing things with computing?
Jason: I’ve been doing things with computing since I was eight, eight years
old. I started working with small computers using Sinclair logic, which in
Brazil were commercialized by the name “TK85.” Those were really small
computers and my dad bought one of them for me, and I developed little

Downtown
Niteroi

Copacabana

Ipanema

Zona Norte

Baixada Fluminense

Fundão

The Atlantic Ocean

 Serra Fluminense

Nova Iguaçu

Rio de Janeiro

IMPA

São José dos Campos (280 km)
São Paulo (400 km)

Brasilia (700 km)
San Francisco (10,600 km)

PUC

Barra

10 km

Figure 3.1
Rio de Janeiro and surroundings.

Nerds from the Baixada and Other Places 75

games on it, and my cousins, who were the same age as I, played those
games, suggested changes, and I would go ahead and implement them. I
learned BASIC using the manual of the computer, which came with native
support for BASIC. So I learned it there more or less by myself, and got
really interested. But I didn’t pursue this much further. Actually, I wanted
to be a writer, to write fiction. I always had rather diverse interests, in dif-
ferent areas. So, it was only years later, when . . . In the eighties, the educa-
tion system had a series of problems with the government at that time, for
a few years. So there were many strikes and they created gaps of sometimes
up to four months during the academic year. [. . .] During one of those my
dad thought it was important to put me in some sort of course so that I
wouldn’t lose a year without studying. So he put me in a computer [infor-
mática] course. [. . .] There in this computer course I was introduced to other
technologies: databases, those things. And then eventually got interested in
this as a career.

Jason presented his involvement with computers as happening in two
phases. At age eight, his dad got him a computer on which Jason learned to
program in BASIC. He did not, however, pursue this interest further at the
time, returning to programming only much later, when he was fourteen.

This two-step story is remarkably common, and I believe it reflects the
developers’ desire to establish the time of their earliest experience with com-
puters, since engaging with software in early childhood is one of the ways
of demonstrating one’s credentials in a practice that expects passion and a
degree of inborn proclivity. As I learned, I was not the only person asking
developers how they got into programming. At least one of my interview-
ees talked about asking this specific question of all job applicants. He was
looking to find people who did not just do programming for a living, he
explained to me, but rather those who loved to program. Asking them about
their entry into the world of software was one way to gauge passion. What
he hoped to hear were answers like Jason’s. (Others sometimes said they
did not need to ask developers such questions, as they could just “see it in
their eyes.”)

Jason’s story of his engagement with computers started with program-
ming computer games for his cousins. Other developers’ stories often
started with playing computer games. As some of my interviewees pointed
out, such play should not be trivialized. “In the end video games are pro-
grammed,” explained Célio when talking about playing with his Amiga
at age six. Early experiences playing computer games lay a foundation for
later computer use. They help children acquire computer skills as well as

76 Chapter 3

what Becker (1953) calls “perceptions and judgments of objects and situa-
tions” that “make the activity possible and desirable” (235).2 Becker argues
that when a group of people engages in activities in which other people do
not engage, this often has to do with the fact that they have learned to see
a particular activity and the related objects in a way that makes the activ-
ity both attractive and feasible. (Or, to turn it around, those who do not
engage in the activity might simply not have had a chance to learn what
it is it that makes it attractive or how to go about it in a way that makes it
enjoyable or at least bearable.) To be a programmer one must learn to see
the computer as an object that can be controlled through an understanding
of its inner workings. One must also learn to find satisfaction in the acquisi-
tion of this control and in the challenges inherent in it.3 Computer games
provide an early situation in which a child can see a computer this way.

Becker stresses that acquisition of “perceptions and judgments” is a social
process: one learns them in the process of engaging in the activity together
with others. Being in the right social group is what often makes a difference
between acquiring the right “perceptions and judgments” and maintaining
a long-term engagement, or trying the activity briefly and giving up. For
many of the nerds I interviewed, their earliest interactions with computers
were stimulated by interactions with their fathers (or sometimes other male
relatives), who either introduced their sons to computers they used them-
selves or bought computers for their sons seeing it as something that would
be worth learning. The long-term and more serious engagement, however,
often depended on finding a group of peers and mentors.

Jason found such a group when his father decided to put him in a com-
puter course at age fourteen. This brought Jason in contact with people
who would help him develop his interest in computers further:

Jason: Instead of going to a mall we were hanging around [says in English]
at this computer course. The instructors of the course were experienced
people, experienced professionals; they knew a lot, they were good, and so
we would be there, picking up tricks and tips from them. People who pro-
grammed at a very low level [working directly with the hardware]. One guy
knew assembler, another one knew C++, another knew C or I don’t know.
[. . .] This group of people, we “traded cards” [trocava figurinhas], right? We
would say: “But how did you manage to do this?” “Ah, I figured out that
at such and such interrupt of DOS you can put this thingie and the cursor
would then notify you every time that it’s . . . you can intercept the pause
at the clock and then you can get the key of the thingie and then you can
call this program on top of that one . . .” Cool ways to do stuff.

Nerds from the Baixada and Other Places 77

While access to mentors and peers was an important means of learning about
computers, we must note that Datacenter also gave Jason access to a milieu in
which learning about computers would be understood as cool, and where an
exchange of findings could be integrated with simply “hanging around” with
friends—an alternative to going to the mall, as Jason pointed out. “Trading
cards” (roughly equivalent to “comparing notes” in English, but with a more
playful connotation) provided Jason and his peers not only with an opportu-
nity to learn from others, but also with a reason for learning new tricks.

This social side of Jason’s experience should not distract us from the
more mundane side of working with software, and the individual effort
involved in “pushing horizons” by trial and error:

Jason: Those were difficult times, I remember, because finding informa-
tion was difficult. To figure out how to do something you had to go by trial
and error. [. . .] So, a solution normally was to get programs in whatever
way possible, someone who had it would make a copy, and you would go
and try checking it out and discovering how it worked. Then you would use
its resources, and perhaps find someone who had already done something
more advanced with this: “Hey, how did you do that?” Then the guy would
explain it to you and you would apply it in your program.

He returned to this topic later in the interview:

Jason: So it took a lot of time to push our horizons. In return, this was
very thorough [bem thorough, bem minucioso]. We managed to do things
that sometimes surprised the instructors: “Wow, how did you manage
that?” “Yeah, I had to map all the interrupts there and find out that this
one did this, the other one did that. I had to find some way to work around
this thing that I couldn’t do.” That happened . . .

To explain the need for the hard work of understanding the system’s low-
level behavior by systematically mapping it out (“mapping interrupts”),
Jason pointed to the difficulty of obtaining foreign books, which were
“crazy expensive” and took months to arrive. This specific problem is rarely
mentioned by those who started learning programming later, in the age of
Google. One important aspect of software work has remained unchanged,
however: now as then, software development requires countless hours of
individual work, much of which goes toward understanding why a techni-
cal system does what it does and how it could be made to behave differently.

The two sides of software work—the solitary investigation and the social
“hanging around”—are inherently linked. Programmers usually understand
software work as being, at its best, a process of making discoveries (“cool
ways to do stuff”) and sharing them. This sharing helps expedite individual

78 Chapter 3

discovery work and creates an audience for “war stories” (Orr 1996) about
the achieved results. To be able to share, however, one must first discover
something. And as many programmers point out, the time that one has
to spend alone in front of the computer for this turns away all but those
who enjoy this process for its own sake. The effort of “mapping interrupts”
requires dedication that is seen as obsessive by outsiders, and often by the
programmers themselves, who often say that anyone who is not “obsessed”
in this way and does not find joy in this painstaking pursuit of obscure
knowledge is likely to find this work too frustrating. “In return, this was
very thorough,” said Jason. Being “thorough” (Jason used an English word
here) is its own reward—a return for the hours spent with the machine. It
is only in the right group of peers, however, that Jason would come to see
“intercepting the pause at the clock” as something “cool,” a legitimate form
of “hanging around,” and a reasonable alternative to going to the mall.

“In a Place So Far Away”

While having to order books from abroad highlighted the foreign nature
of the practice he was starting to engage with, the power of remote centers
over the local practice was not as apparent to Jason in the late 1980s as it
is today.

Jason: We wanted to make applications because at that time there were
few applications. There were few things. So, since we understood a bit of
programming, we thought that we had what we needed to build those ap-
plications and become rich and famous. And it was even more exciting to
see that we could build things that were good.

Jason then turned to a story about his friend Rogerio, who grew tired of
WordStar, a text editor he was using, and decided to write his own.

Jason: So he stated to write a text editor that started to have functional-
ity that was better than WordStar. A 16-year-old kid, stuck [enfurnado] in a
place so far away! And that was cool, this joy . . .
Yuri: Far away where?
Jason: In Nova Iguaçu, far away from . . . Even far away from the closest
metropolitan center, which was Rio de Janeiro, but also far from the place
where commercial software was made, which is there in the United States,
there in Silicon Valley [says in English], et cetera. So, in a peripheral city in a
third world country, the guy managed to make a program that in compari-
son to the commercial software that was available. . . you could say: “This
software is good!” This potential motivated us to study, to learn things.

Nerds from the Baixada and Other Places 79

As Rogerio was taking on WordStar, Jason himself focused an even more
ambitious task: running several programs in different windows.

Jason: I wanted to do something that would allow you to run several pro-
grams at the same time in different windows. Now you see: I wanted to
do this in graphic form, on the DOS screen, but it was very slow, not very
good. I wanted to keep trying better solutions, to put smarter video driv-
ers, to copy the data faster. So I arrived at the conclusion that to do this I
would have to use the disk and that it would end up being very slow, so I
decided that this would not work and gave up. And went to pursue other
things. I was quite annoyed when Windows came out a few years later,
using of course the disk—which was the idea that I had and discarded as
undoable. I thought: “Damn, if I had pursued this, I would have become
rich.” [Laughs.] Or not, right? [Long pause.]

Jason followed the story with a long pause, giving both of us a chance
to contemplate what would have happened if he were successful in his
endeavor.

Jason referred to Nova Iguaçu as “a peripheral city in a third world coun-
try”—far even from Rio, not to mention Silicon Valley, the mecca of the
software world. He also described the period as a difficult time, as we saw in
the previous section. This isolation, however, allowed Jason and his friends
to dream big. While Jason remembered Windows coming out a few years
after his own attempts to do the same thing, the first version was actually
released in 1985, when Jason was ten years old. Jason did not see Windows
until 1990. Jason’s friend Rogerio similarly focused his efforts on writing
an alternative to WordStar—at the time when WordStar was dramatically
losing market share in the United States, suffering devastating competition
from WordPerfect and Microsoft Word.4 Technical news took time to reach
Nova Iguaçu in the 1980s.

As a teenager, Jason thought he would have become rich had he man-
aged to develop a good way of running programs in multiple windows
(something that had made Bill Gates wealthy three years earlier). Now he
seems to doubt that this would have helped. While this loss of optimism
undoubtedly has much to do with growing up, younger developers rarely
express the same sense of excitement as those who entered computing in
the 1980s. The Internet has made Brazilian developers simultaneously more
and less isolated. While being more connected, Brazilian developers today
appear to be more aware of how isolated they are. In 1989, Silicon Valley
was a rather vague idea. It was hard to imagine concretely what it would
be like to be there. Today, the developers are a lot more exposed to what is

80 Chapter 3

happening in the United States. They are thus more aware of being “stuck”
in Brazil.

The relative scarcity of foreign applications in the 1980s created opportu-
nities for local developers—at least in the developers’ imagination, but also
to some extent in practice. This situation changed rapidly in the 1990s, as
American companies increasingly began to enter the Brazilian market. Local
application developers found themselves being judged by standards that
were increasingly difficult to meet. While many opportunities remained in
the local IT services market (where local companies get an advantage from
their closer relationships with their institutional customers), developing
noncustomized software products has been broadly accepted as the domain
of the Americans—or, perhaps, the Indians they employ.

People who start product companies are crazy, said Rodrigo Miranda as we
sat down to discuss the history of Nas Nuvens, a few weeks prior to my
interview with Jason. João is crazy in this sense, he continued. But he founded
Nas Nuvens in 1997. Starting a product company now would be even crazier.
In the 1990s the customers knew little of what was happening abroad,
explained Rodrigo. Now they compare everything with foreign alternatives.
Then you could say: “This is a search engine.” And they would say: “Okay.” Now
they respond: “This isn’t a search engine. Google is. Is this as good as Google?
Does it do the same things?” As we will see in later chapters, successful com-
panies avoid such competition by building custom software for specific cli-
ents, where their location becomes a source of strength vis-à-vis foreign
competitors.

Rodrigo’s memories of the 1980s, however, differed from Jason’s. In par-
ticular, they did not include a shortage of software applications. Hardware
was always hard to get in Brazil, but software was usually easy, Rodrigo told
me. By 1990s, there was “the blue box,” he explained, a software applica-
tion that made the computer emit sounds that tricked the phone network
into letting you make free phone calls, even international. Some people
Rodrigo knew used this application to connect to computers in Sweden for
five days at a time to download software. And once one of Rodrigo’s friends
had the software, they all had it. “We were used to having new software as
soon as one week after it was released,” Rodrigo added later. He told me of
a particular machine in Rio that collected the larger downloads. Of course
its location and its very existence were secret, he noted. I asked Rodrigo how he
knew about this “secret” machine. He smiled. Obviously all the nerds knew
each other, he explained. Local ties were (and remain) important. Living in
the upscale Zona Sul, Rodrigo knew the right people. Fifty kilometers away,
in the poorer Nova Iguaçu, Jason was attending the wrong high school.

Nerds from the Baixada and Other Places 81

In either case, however, the newcomers quickly discovered that they
were entering a world centered somewhere far away (even if they were not
sure how far) and that success in this world would depend crucially on their
ability to build links to those foreign centers. In the very least, they had to
obtain access to foreign technology—the hardware and the programs. They
had to find the books and learn to read them in English. They also had to
learn to build local ties, to make construction of global links a collective
project.

A Nerd in Transition

After Datacenter, Zé Luís opted for a vocational secondary education, still in
Nova Iguaçu, now thinking of pursuing a career in information technology.
There he soon found himself ahead of the class. “Secondary school was a
piece of cake,” he said, using English for the last phrase. During his first year in
the school, however, Jason started working on his school’s database. “Which
ended up giving me a lot of access to people, the teachers, the labs,” Jason
explained. Spending all of his free time in the computer lab Jason could
make progress in his learning despite the lack of challenging coursework.

Time spent in the lab also earned him his English nickname “Jason.”

Jason: I had access to the labs to do this [work on the database] and this
gave me the nickname that I use until today professionally. They called
me “Jason,” since there was that film “Friday the 13th,” about Jason with
a mask, etcetera, who would never die. You could shoot him, and then . . .
And I was someone really obsessed with programming, so I would go there
and program, spending days there.

One day he happened to be free from classes in the morning, having fin-
ished an exam early. This allowed him to go to the lab and spend his entire
day there.

Jason: I got there and sat there programming, and the groups were com-
ing and going, coming and going, and I stayed there from eight in the
morning until eleven at night without getting up from the chair. And since
secondary school is a place where rumors spread naturally, the next day the
whole school knew of the boy who had stayed at the computer from eight
in the morning until ten at night. So during the next week they started call-
ing me all sorts of names: “zombie,” “vampire,” “the living dead,” “without
signs of life.” What stuck in the end was “Jason.” So, everyone would be
like: “Ah, Jason who wouldn’t die, who is there at the computer, as always.”

82 Chapter 3

The story illustrates the tension faced by many young nerds. Jason’s obses-
sion with computers was not understood by his peers at the new school
(despite the school’s technical focus) and marked him as different from
fellow students, a theme that comes up in many other biographies. At the
same time, however, Jason’s computer skills, obtained through hours of
“mapping interrupts,” began to give him privileged access to important
resources. He was also starting to get financial rewards for his knowledge,
receiving a stipend in return for his work. A year later Jason got hired as a
teaching assistant in his school’s computer course and his technical knowl-
edge started bringing him certain rewards in terms of social status as well,
putting him in a position of power over fellow students. While intended
as a term of ridicule by his classmates, the name “Jason” thus also came to
signify his entry into the world of professional software. Today Jason wears
this moniker with pride, using it as his “professional name.”

Being a nerd is not a career choice, but a way of life often accepted in
childhood. It involves, among other things, collective exploration of sys-
tems of knowledge that lie outside of the mainstream culture and can range
from the imaginary worlds of role-playing games and graphic novels to the
interrupts of DOS. Some of those systems of knowledge, however, underlie
what Giddens (1991) calls “expert systems”—sociotechnical systems that
are essential for the functioning of the modern society yet are opaque to
most of its members. People who master “expert systems” (the “experts”)
face good opportunities for gainful employment. The system of knowledge
related to getting computers to perform various tasks supports one of the
Giddensian “expert systems” and appears to be particularly appealing to
nerds.

As young nerds grow up, they come to realize (often with some nudging
by adults) that some systems of knowledge bring more financial opportu-
nities than others and start focusing on them as their future profession,
leaving computer games and RPGs as a hobby (and eventually abandoning
them altogether). As they move into professional software development,
they bring with them some of the skills they acquired in other nerdy pur-
suits—such as Mauricio’s networking skills perfected for the sake of playing
Doom. More important, they bring with them a set of “perceptions and
judgments” that make it possible to see software development as enjoyable
because of the opportunity to “push horizons” that it offers.

The transition from software as a childhood passion to software as a
profession, however, involves more than a choice of one system of knowl-
edge out of a few attractive alternatives. The future software developer must
start to engage in an entirely new way with the social world surrounding

Nerds from the Baixada and Other Places 83

computer knowledge. As I argued in chapter 1, a practice such as software
development must be understood as simultaneously a culture and a sys-
tem of economic relationships. A sixteen-year-old nerd who has acquired
a good quantity of the culture of software development may nonetheless
be quite new to its economic side, and in fact may have to relearn some of
the culture. This transformation typically requires a combination of two
factors: experience working with people who practice software profession-
ally (typically inside an organization that produces software for commer-
cial use), and the acquisition of a certain theoretical base. Most developers
acquire such a theoretical base at least in part in college.

Universities

While the developers are nearly unanimous in stressing their ability to learn
by themselves and are frequently critical of their undergraduate experience,
most of those who spent enough time in college recognize at least some
value in the experience beyond the certification demanded by the employ-
ers. For those who attended college full-time, the early years often provide
a crucial socialization experience, introducing the future software profes-
sionals to a much-expanded circle of like-minded peers (who often form
the core of their future professional networks) as well as to people who have
engaged with software for much longer. Many also stress the importance
of the curriculum and the discipline demanded by some of the university
programs. “When you go to the university you have a defined curriculum
that you have to go through, whether you like it or not,” explained Célio,
who attended a public university. He illustrated this point with the story of
how he learned Java in 1997, at the time when few people at his university
even knew of the existence of this new programming language. Célio had
to rely on books and the Internet to learn about Java, but he credits the
university for pushing him to learn by requiring him to write a report about
a less known programming language. Such learning of course could and
does happen in the workplace. Few employers, however, want to train their
employees from scratch, and most usually require at least a year of college
instruction even for those who have learned programming in high school.

Rio residents usually group the metropolitan area’s educational options
into three categories. At the apex of the system (at least in computer science)
stands the Pontifical Catholic University of Rio de Janeiro, also known as
“PUC-Rio” or simply “PUC” within the city. Like other Catholic universi-
ties, PUC is private in the sense that it is not run by the government, but
the term “private” is rarely used in Brazil when referring to such schools.

84 Chapter 3

The term “Catholic” (universidades católicas) is used instead. PUC is highly
prestigious. It is also quite expensive. Closely following PUC in prestige—
and in some fields surpassing it— are several “public universities” (universi-
dades públicas) run by the federal or state government. Such universities do
not charge tuition but are very selective—so much so that public second-
ary education rarely prepares a student for the entrance exam into such
schools. (So, perversely, up until recently, access to free public education
required prior access to expensive private high schools or private prepara-
tion courses.5) Additionally, public universities typically have their classes
during the day, creating difficulties for students who must work to support
themselves, making such universities most attractive to students who can
rely on parents to pay for their living expenses. Lower-middle-class stu-
dents who cannot attend public universities but want higher education are
served by “private universities” (universidades particulares), which are run
independently from the government, usually as for-profit entities though
sometimes by nonprofit foundations. Such schools charge tuition, but they
accept students with less preparation and offer night classes in a range of
convenient locations. Many of them operate on an impressive scale: one
runs fifty-seven campuses with a total enrollment of nearly 200,000 stu-
dents. It is usually understood, however, that quality of education is not
one of the strengths of such institutions.

Like many of my other interviewees who attended public high schools,
Jason did not see public universities or PUC as an option. Instead, he started
a nighttime program at a local private university. He abandoned the pro-
gram after three months, concluding that he was not going to learn any-
thing useful in it:

Jason: I only spent three months in that university. [. . .] At the time I
was a very technical guy, not very . . . I was very much a “bit twiddler”
[escovador de bit] is what we called it, right. A really low-level guy. [. . .] And
so I underestimated such knowledge as high-level analysis. I even consid-
ered databases trivial: “Meh, you just take the data, put it there, and later
take out, put in again and take it out, put in, take out. Nothing special.”
So I somewhat underestimated the courses that they had. I kind of evalu-
ated the curriculum from the point of view of the technologies. I thought:
“Whatever. They won’t teach me any new technology here, so I won’t stay
here.” And so I went home to study other things. And I ended up doing a
mix of things: studied this graphics thing, studied programming languages,
learned C++ at that time, between ’91 and ’94, and other things. [. . .] At
that time there already were decent books, right. It was already ’91, ’92. It
was possible to go to a bookstore. They opened one, actually here, down-

Nerds from the Baixada and Other Places 85

town, it was our playground [says in English]. “Livraria Ciência Moderna,”
here in Edifício Avenida Central . . .

Having studied largely by himself and with his peers up to that point, Jason
had appreciation for certain types of knowledge, which did not include
the theoretical and “high-level” knowledge that the university program
was offering him. (High-level in this case means looking at the overall
design of information systems rather than focusing on details.) While he
later realized that such topics were important for his work, at the time a
small local university lacked the prestige that might have convinced Jason
to put aside his own reservations and take the courses more seriously. The
seeming ease of learning everything at home, using foreign books that were
becoming increasingly available, further contributed to his doubts about
the university.

Jason’s experience with the university illustrates a more general pattern
that we will see many times later: peripheral actors often lack trust in each
other, which leads them to focus on direct global links rather than make
use of what other local actors can offer. Students assume that local universi-
ties (especially the less prestigious ones) cannot teach them anything use-
ful. University instructors often have equally little trust in students’ ability
to learn.

Jason’s quick abandonment of the university program is somewhat atyp-
ical, enabled in part by Jason’s success in finding a programming job prior
to attending university. In contrast, most software developers I interviewed
in Rio de Janeiro had completed at least one or two years of a university
program in computer science or informática (IT) before being able to get any
serious software job. The percentage of them who actually complete their
degrees, however, appears to be somewhat lower than it would be in the
United States.

Those who can get into (and afford) PUC or one of the public schools
typically spend their first year or two just studying (and often remember
that year fondly as a time of learning), but then look for an “internship”
(estágio), which often means a relatively permanent job with somewhat
reduced hours and additional flexibility, at a reduced salary. They typically
finish their program (which usually leads to a raise), but often talk about
the last few years of school without enthusiasm. The most important effect
of the university program, therefore, is that it helps the future developers
obtain an internship.

Those who cannot attend public schools or PUC typically start work-
ing in a different (though often related) occupation—for example, offer-
ing technical support while simultaneously attending night classes. After

86 Chapter 3

a year or two of night classes they can often get an internship, though at a
lower salary than that of PUC students. While they often doubt the quality
of instruction in the universities they attend, they typically stay enrolled,
knowing that such university enrollment will be seen favorably by future
employers and that the eventual “piece of paper” will further expand their
employment options. Their lack of trust in the program is thus primarily
expressed in their lack of attention to the course. After obtaining an intern-
ship and eventually more permanent employment, developers who study
in private universities at night often slow down their progress substantially,
sometimes taking many years to finish the program or giving up altogether.

The Market

Despite his lack of academic credentials, Jason managed to find work,
moving through a few small companies and eventually arriving at Petro-
bras—Brazil’s semi-public oil company, widely seen in Brazil as one of the
few sites of serious technical innovation. Working for Petrobras had been
Jason’s “professional dream,” but it turned out to be more complicated
than he expected, as Jason discovered the limits of the knowledge he had
acquired up to that point.

Jason: It was at Petrobras that I kind of started feeling the crisis of my
super-technicism. Because I got there and discovered that the world had
changed a little, things were easier to do in the world of 1994, 1995, the
mid-nineties. The technology had become easier, access to information was
easier, and I had a lot of technical background in “bit twiddling” but this
wasn’t as valued as it was five or six years ago in the late eighties. So I saw a
market that needed bank applications, basically information systems, and
I didn’t have much theoretical background in this, right.

Jason described meeting new kinds of people: “people who came from the
information systems from the old days, from COBOL, from databases.”
Those people were part of a world that existed before, but was hidden from
Jason, the world of information systems running on mainframe computers,
in many ways also representing a different culture.

This new world gave Jason some credit for his skills as a “bit twiddler,”
skills acquired from foreign books and long hours spent at the computer—at
least enough to hire him. The world of mainframe computing was itself in
turmoil, facing the opportunity and the challenge of upgrading to the new
microcomputer hardware that was suddenly becoming available—a topic
I discuss in chapter 4. It also demanded, however, many skills that Jason

Nerds from the Baixada and Other Places 87

did not have. “I was at a disadvantage compared to those guys, because I
didn’t have theoretical background in data modeling, requirement analysis,
things that nobody even talked about at the time.” Jason decided to go back
to school. His second attempt at a university education, however, ended
even quicker than the first. Jason was again disappointed by the quality of
instruction and was too busy with work.

Working inside Petrobras also presented other challenges. As is common
in Brazil, Jason was employed in Petrobras as a contractor:

Jason: So, it [Petrobras] had this cycle of public competitions for getting
new employees, etc., there are people who are employed by Petrobras. But
when it needs something done it gets a person from outside, who works on
a temporary contract. However, the law doesn’t let you do this for long. La-
bor laws in Brazil are very heavy. So, what does it do? It contracts an exter-
nal company, a staffing agency, and tells them: “Hire this guy and sell him
to me.” So the company hires the guy, he does a contract. But then they
have to do a tender, right? So they take bids, another company wins, so
“Let this guy go. You—hire this guy over there.” So the guy is contracted by
three different companies, but really he is just working at Petrobras. They
want me and they invite the companies to bid on contracting me. [Laughs.]
I and thousands of people who worked for Petrobras, to make the process
faster, to make things work. Because if they were to depend on opening the
competition [for employees], that would take time, a year, two, and then
there is corruption, what we call “fish soup” [peixadas] right—the politi-
cians picking who will or won’t get in, they would game the competition,
all of this corruption.

A year later, one such reshuffling (“Dismiss him here, contract him over
there”) resulted in a “bureaucratic accident” leaving Jason without pay for
two months. While a few months without a salary would shock few people
in Brazil, Jason took it as a sign that Petrobras was not an appropriate work
place for a software professional: “As an IT professional I am naturally averse
to bureaucracy. And when it touches me, I get furious. I got ticked off and
decided to leave. So I returned to working by myself.” Jason spent the next
ten years working for his own company, finding, like many others, that this
gave him more opportunity to practice software development in relative
isolation from the Brazilian organizational context.

The contractual arrangement that Jason describes appears to be espe-
cially common in Petrobras, since its semi-public status means that hiring
and firing employees is even more complicated than it is for private com-
panies, but is often used by many other organizations. Many interviewees

88 Chapter 3

told me of multiple levels of contracting. While contracting appears to be a
lot more prevalent in Rio de Janeiro than it is in Silicon Valley, it is hardly
unique to Brazil and cannot be fully explained just by the peculiarities of
the Brazilian labor laws (e.g., see Barley and Kunda 2004). Around the same
time that Jason endured his arrangement with Petrobras, “permatemp”
workers of Microsoft, one of the most “central” sites of software work at the
time, were fighting the company over a similar contractual arrangement
(Vizcaino v. Microsoft Corp.). Yet, the issue is often understood in Brazil as
a uniquely Brazilian problem, contrasted with an idealized image of work
in the United States. (The US software working environments are often
also idealized in other ways. For instance, they are often seen as places
where ideas are judged purely on their technical merit, rather than on the
personal connections of their originators.) The idealization of the centers
illustrates an additional challenge faced by the peripheral participants.
When their understanding of how the practice ought to work exhibits a
clear lack of fit with the local institutional realities, peripheral developers
have no easy way of knowing whether the theory carried by the culture
of the practice actually fits with the reality elsewhere or simply represents
wishful thinking.

Other Paths

Employers’ use of passion as a way of identifying “good” software devel-
opers suggests that not all developers in Rio de Janeiro start their journey
toward this career by falling in love with their dads’ computers. And of
those who do, few later choose jobs based only on whether the work aligns
with what they love to do. Finding a job that pays, and pays reliably, is typi-
cally a major concern, especially for the older developers who must support
their families. Software careers are similar to academic careers in this way.
In both cases, the new members are often first drawn to the community of
practitioners and its esoteric knowledge. However, those who will continue
their engagement with the practice must eventually learn to engage in it in
a manner that would allow them to earn a living, freeing them from having
to dedicate their time to other kinds of work. To move toward more central
(in Lave and Wenger’s sense) and more valued forms of participation often
similarly requires learning to engage in the practice in very different forms
from the ones that may have originally attracted the novice.

The role of passion may also be specific to particular places. My inter-
viewee who stressed his desire to hire developers who “love to program”
seemed to have gotten this idea from a programmer essayist working in

Nerds from the Baixada and Other Places 89

Silicon Valley. While this idea resonates in Brazil, it is not universal. In
my conversations with software developers in Bangalore, India, including
those working for the world’s most prestigious IT companies, I typically
heard a rather different story of entry into the world of software, one rarely
heard in either Brazil or the United States: “passing for computer science.”
“Passing” means getting a high enough score on the national university
entrance exams to get into a computer science program. In India, my inter-
viewees nearly unanimously explained, young people do not choose to do
software work—they are chosen for it. Those who get the highest scores on
university entrance exams proceed to study computer science. Those who
score less do other things (or perhaps try to get into the IT industry by other
means). The outsourcing economy guarantees computer science graduates
such high salaries in comparison to everyone else that few would seriously
consider not doing computer science when offered a chance. Indian devel-
opers often talk about their passion for technology as well, seemingly eager
to assuage the American stereotype of them as “mercenaries.” Sometimes
they stress that they were already science nerds before they encountered
computers. However, they have to learn later, in college, what it really
means to “love” software.

In this regard, the situation of Brazilian software developers is more simi-
lar to that of their American colleagues than their Indian ones. While soft-
ware development provides good career opportunities, it is one of many
upper-middle-class careers in Brazil, and not the best-paying one. For PUC-
Rio’s Department of Informatics, the most prestigious computer science
department in Brazil, attracting good applicants for its day time program in
“computational engineering” is a challenge at times, I was told by one of
the professors. Those who do well on the entrance exams and can afford an
expensive daytime university face many competing options.

PUC’s cheaper program in informática (information technology), taught
at night, is more popular. It appeals to lower-middle-class students who
see it as a route to social mobility, though a difficult one. The Brazilian
software industry primarily serves domestic clients, who often seek rela-
tively simple systems at low prices. While this may contribute to making
the software work less attractive to highly educated Brazilians (who some-
times see themselves as overqualified for the work they get to do), it also
creates many opportunities for less sophisticated software work, at lower
wages. Many software companies respond to this by hiring developers with
incomplete college degrees and occasionally with no college experience at
all, then relying on a small number of highly educated individuals to man-
age and mentor them.

90 Chapter 3

One of my interviewees, “Miguel,” started his career at age fourteen as
an “office boy” in a software company—an assistant tasked with things
like delivering documents to clients, and receiving the minimum salary for
the State of Rio de Janeiro, around R$260 a month.6 Between the deliver-
ies, Miguel spent time learning to use the computer, and later the basics
of web development, relying on conversations with the developers, books,
and practice (“reading and testing, reading and testing”). He was eventually
allowed to take on simple web development tasks needed by the clients.
Two years later Miguel joined his current company as an “intern” working
on web development and earning R$300, while attending high school at
night. Another six years later, at the time of our interview in 2007, Miguel
was considerably more confident in his skills as a developer, was attend-
ing a university at night, and was earning between R$1,000 and R$1,500
a month. At age twenty-two he was making substantially more than his
father, who had not finished high school. Miguel was looking forward to
yet higher earnings in the future. Having grown up in a family that he
described as “more towards poor than middle class,” Miguel talked about
software development in pragmatic terms—a way to make a good living.
Some of the other developers I interviewed had moved into software in
similar ways.

Miguel’s story shows that falling in love with computing in early child-
hood is not the only way to enter the world of software development. The
path to software that starts as a childhood hobby is an important one,
however. Developers who enter software as Miguel did typically stay at
the lower rungs of the software world. This happens for many of reasons.
Sometimes they are held back by their lack of theoretical training, some-
times by simple class prejudice on the part of their managers and peers. In
many cases they also appear to dedicate less time to software: Miguel had
no computer at home. The more ambitious ones also often look for alterna-
tive careers, unless they develop a “passion” for software along the way. At
the end of my interview with Miguel, I learned of his plans to apply for a
government job unrelated to information technology.

* * *
This chapter has explored individual entry into the world of software, look-
ing at the experiences of a small number of people. In many places I have
connected such individual experiences to the larger context, touching
briefly on topics such as the structure of secondary and higher education
in Brazil, the organization of the local software industry, and the history
of Brazilian science and technology policy. I have generally avoided treat-
ing such topics in depth, however, in most cases limiting my discussion

Nerds from the Baixada and Other Places 91

to things known to the participants, who themselves often had, at least
at the time, a rather limited understanding of the larger context of their
experiences.

In the next chapter, I take a broader and longer look at the world of
software, exploring its history and geography, and focusing in particular on
how the practice of software development got established in Rio de Janeiro
through the combined (though sometimes conflicting) efforts of many dif-
ferent actors. This history will give us a different view of the world that
Jason and my other interviewees were entering in the 1980s and 1990s.
After that, I return to a more contemporary and local discussion, looking at
three specific projects, which represent some of the different ways in which
local participants can engage with a global world of practice today.

4 Software Brasileiro

Unlike Mauricio, Jason, Rodrigo, and most of my other interviewees, Ivan
da Costa Marques did not grow up playing with computers.1 The first time
he saw a computer was in college, which he entered in 1963. Ivan studied
at ITA, an elite technical school located around 300 km away from Rio de
Janeiro, which had been established over a decade earlier and was closely
modeled on MIT and other US universities. A key center of electronics train-
ing and research, ITA was the first Brazilian university to build a computer,
and one of the first to receive a computer from abroad. As a Carioca dedi-
cated to spending his summers in Rio de Janeiro, however, Ivan had his
first substantial exposure to the world of computing at PUC-Rio’s recently
established Data Processing Center. Ivan quickly became interested in soft-
ware and its potential. When Rio’s Federal University (UFRJ) established its
own Data Processing Center a few years later, Ivan started working there,
teaching courses in Fortran and writing software in machine language “just
for fun.”

A decade later, Ivan came to play an important role in the history of Bra-
zilian computing, becoming a coordinator for the Brazilian government’s
policy of limiting import of foreign computers in order to create space for
local computer makers. The later years of the policy, which became known
as “the IT market reserve” (a reserva de mercado de informática), cause pain-
ful memories to my younger interviewees, who often feel that the policy
deprived them of access to proper computing tools in their childhood and
youth, requiring them to resort to Brazilian surrogates. My older interview-
ees provide more nuanced accounts. I will not attempt in this chapter to
judge the Brazilian government’s policy toward computing technology in
the 1970s and 1980s. Instead, I examine the history of the different efforts
to establish computing practices in Brazil, placing the market reserve in this
larger context.

94 Chapter 4

Looking closely at such efforts will help us understand the constructed
nature of the world that Jason, Rodrigo, and their peers entered in the 1980s
and 1990s. In particular, it will help us see more clearly the extensive local
work undertaken to link the world of computing with local and national
contexts, and the many choices involved in this process. While my story
here focuses on Brazil, I believe a similar tale can be told about many other
places. And while the history of the establishment of the software practice
in each place has its idiosyncrasies, the result of this process is a remark-
able similarity of computing practices around the world. This similarity is,
of course, not incidental. After all, the efforts I describe in this chapter did
not, for the most part, aim to create “Brazilian” practices of computing and
software development. Rather, they aimed to establish global practices in
Brazil. Even Brazil’s closing of its market to companies such as IBM repre-
sented, perhaps paradoxically, a globalizing project, as it aimed to bring to
Brazil global practices of which, the participants felt, IBM was depriving
their country. It is such constant global orientation of nearly all the par-
ticipating actors, I argue, that ensures that the result of their effort is not a
collection of idiosyncratic practices, but rather a set of linkages between the
global world of software and specific places—a set of linkages that makes it
so easy to think of the world of software as naturally placeless.

The establishment of the practice of software development in Brazil and
other places cannot be understood in isolation from the larger system of
practices related to computing, including the production of hardware and
the many uses of computers. It is also important to consider the processes
of synchronization that preceded the arrival of the first computers to Bra-
zil, which created in Brazil the context that information technology today
takes for granted, from the existence of basic research institutions to the
availability of electricity with compatible voltage, frequency, and plugs.
Global software has power in Brazil because it is applied in a controlled
and constructed environment, a “software laboratory,” to borrow Latour’s
metaphor.2 To describe all the different processes of “enrollment” that went
into constructing this laboratory, the story would have to start at least as
far back as the beginning of colonization of Brazil in the mid-sixteenth
century, if not with the earlier story of the beginning of Portuguese expan-
sion. To keep this chapter to a reasonable length, I focus on the twentieth
century, and for the most part events since the 1950s.

This chapter begins with a quick introduction to the history of comput-
ing, proceeding from its origins at the two ends of the invisible transatlan-
tic bridge connecting England and the East Coast of the United States and
then moving quickly to its modern global spread. I then present several

Software Brasileiro 95

stories that show how the global world of computing established itself in
Brazil and in Rio, a particular city at the periphery of that world.

A Global Profession

The ramp-up of World War II in the early 1940s led to rapid innovation
in weaponry on both sides of the conflict. This new weaponry required a
substantial amount of computation, in particular the production of firing
tables for artillery—tables that allowed a gunner to determine the appropri-
ate orientation of a weapon based on its technical characteristics, the esti-
mated location of the target, and the weather conditions. Determining the
proper orientation for a particular set of conditions required solving a set of
differential equations, and the procedure had to be repeated for hundreds
of combinations.3 In the United States this difficult work was delegated to
computers located in Aberdeen, Maryland, halfway between Washington,
D.C., and Philadelphia. As the amount of work grew, additional computers
were hired at the nearby University of Pennsylvania, with the total number
of computers exceeding a hundred. Those “computers” were people—pro-
fessional mathematicians (usually women) who performed the calculations
with the assistance of mechanical calculators. In 1943, two researchers at
the University of Pennsylvania, John Mauchly and J. Presper Eckert, pro-
posed automating the calculations by building a machine using vacuum
tubes—an electronic “computer” (Polachek 1997). The result of the project,
known as the ENIAC, was completed in late 1945, just a few months after
the war ended.

The ENIAC’s claim to being the first electronic computer is disputed by
a number of other systems built around the same time on both sides of
the Atlantic, including the German Z3 and the British Colossus. What per-
haps makes the ENIAC the most notable of those machines is the ENIAC
team’s success in commercializing one of their later computers, the UNI-
VAC. While the ENIAC was created as a singular instance, only a few years
later Mauchly and Eckert’s operation (which by that point had been bought
by Remington Rand) had set up almost two dozen installations of the UNI-
VAC I. The first of those machines were installed at the headquarters of
the United States Census Office and at the Pentagon, both near Washing-
ton, D.C. Later ones were installed all around the United States, with the
heaviest concentration in New York, where Remington Rand was also based
(Ceruzzi 2003).

After a series of mergers, Remington Rand survives today as a part of Uni-
sys Corporation, still a player in the computing business. By the mid-1950s,

96 Chapter 4

however, the term computer had become firmly associated with another
New York-based company: IBM. IBM’s success in selling computers was
hardly accidental, since the company had come to dominate the business
computing market even before the invention of the electronic computer.
It did so through its pioneering use of an earlier generation of information
technology: a mechanical device that could accept large stacks of cards that
encoded data as a sequence of punched holes and would then quickly add
up the numbers encoded in a specified field. Originally developed for the
needs of the 1890 United States Census, the device soon found wide use
in business (see Austrian 1982). Watching the early success of the UNI-
VAC, IBM recognized that the electronic computer provided a powerful
(if expensive) alternative to its tabulators. By 1951 IBM was selling its own
computer. IBM’s familiarity with the practices of use of business comput-
ing had proved to be a bigger advantage than Remington Rand’s head start
in the new electronic technology (see Campbell-Kelly 2004). By the early
1960s, IBM came to dominate the computing industry to such an extent
that its competitors were often jointly referred to as “the seven dwarfs”
(Ceruzzi 2003).

One of the things that distinguished electronic computers from the ear-
lier tabulators and nearly all of the earlier electromechanical computers was
their universality. Electronic computers were not built for any particular
task. Rather, they could perform a wide range of calculations following a set
of instructions. They would load such instructions in the same way as they
would load the data on which they performed the calculations: either from
a stack of punched cards or from a perforated tape. Such stored instructions
were called “plans” or “programs,” borrowing a term used in a different
sense with the ENIAC.4 The need for such programs created a need for peo-
ple who would program computers—“programmers.” The earliest program-
mers were women from the ranks of human “computers,” which included
the six “ENIAC girls” who handled the configuration of the original ENIAC
(Fritz 1996; Light 1999). As men were returning from the war, however,
women were being increasingly encouraged to return to the home, and
programming started to acquire its distinct modern characteristic as a pre-
dominantly male profession.5

Since the 1950s programming work has undergone substantial changes.
As computer makers quickly learned, their customers often spent as much
or more money on programming their computers than they did on the
purchase of the computer itself. Over time programs came to be seen as a
separate and important component of a computing system, leading to the
emergence of the new word “software,” coined by analogy with “hardware.”

Software Brasileiro 97

The ranks of programmers steadily expanded: from the six women who
programmed the ENIAC in 1945 to around a thousand people working in
the United States a decade later.6 While the early programmers were usually
hired by organizations that purchased computers or by vendors, the late
1950s saw the emergence of software contractors—companies that would
write software for other organizations (Campbell-Kelly 2004). By the mid-
1960s some of these companies started selling software as a product—offer-
ing the same (or essentially the same) software to multiple clients. While
the dramatic success of some such companies has attracted much attention,
it is important to remember that most of people who write software today—
now mostly known as “software developers”—still write software intended
for use either by a particular client or by their own organization.

While the number of people who develop software today is hard to
count precisely, as a rough approximation it likely approaches about ten
million people worldwide, comprising up to 2 percent of the employed
population in the most developed countries.7 Today’s software developers
are also distributed quite widely around the globe, though their density var-
ies dramatically. Both of those aspects can be illustrated by figures 4.1–4.3,
which show a mapping of IP addresses that have downloaded Lua software
libraries and modules from LuaForge.org (a web site maintained by Rodrigo
Miranda) in 2007–2009.

The maps show a substantial dispersion of software developers work-
ing with (or trying out) Lua. With the notable exception of Africa, most
populated regions and most of the world’s countries are represented, from
Nepal and Bangladesh to Paraguay and Nicaragua. This spread is particu-
larly notable, considering that the map does not represent the totality of
software developers, but rather just those interested in Lua. Maps drawn for
libraries in other programming languages, however, look quite similar.8 In
other words, software developers not only are spread around the globe but
also generally tend to use similar technology.

Qualitative data—for example, my own interviews with software devel-
opers in Brazil (and also in California and India) and my observation of their
work—confirm this impression of substantial homogeneity of the practice.
As we saw in the preceding chapters and will see illustrated again in later
chapters, software developers in Brazil develop software using essentially
the same tools and techniques. They also share jokes, adages, and cultural
references. Some of their jokes and cultural references come from IBM of
the 1950s and 1960s. Even more often they reference the “hacking” culture
of MIT of the 1960s and 1970s. Quite frequently they refer to contempo-
rary software heroes and bloggers. They also share their identity as software

98 Chapter 4

Figure 4.1
LuaForge.org downloads, January 2007–April 2009. Notes: The graph was con-

structed by taking unique IP addresses that have initiated downloads of Lua libraries

from LuaForge.org between January 1, 2007, and April 28, 2009, a total of around

200,000 IP addresses. Those addresses were then mapped to latitude and longitude

using the GeoLite City database. The resulting observed locations were then grouped

with others within 100km of them. The area of each circle is proportional to the

number of IPs at the location, with the smallest circle representing one IP each and

the largest ones representing around two thousand. The GeoLite City database is

provided by MaxMind and is described at http://www.maxmind.com/app/geolitec-

ity. The database maps an IP address to the correct country in 99.5 percent of the

cases and usually places it within 25 km from the actual location (e.g., 79 percent of

the cases for the United States, 54 percent for Brazil). Some addresses, however, may

be mapped to a location that is in the right country but more than 25 km away

from the actual location (18 percent of the cases for the United States, 25 percent

for Brazil) or not be mapped to a specific location beyond the country (3 percent for

the United States, 21 percent for Brazil). Locations mapped at the level of a country

are represented by a circle in the middle of that country.

Software Brasileiro 99

Figure 4.2
LuaForge.org downloads, January 2007–April 2009, Asia. (See notes for figure 4.1.)

developers, nerds, people interested in information technology, often treat-
ing this identification with a global community of software developers as a
natural part of who they are and as an explanation for their actions, as we
saw in the previous chapter.

Whether we think of software in purely technical or in cultural terms,
one cannot talk about “Brazilian software” in the same way as “Brazilian
music”—that is, as a distinct kind of software or a different kind of software
practice that could be meaningfully differentiated from “American soft-
ware” or “Indian software.” The title of this chapter is an intentional mis-
nomer. The term “software brasileiro” is rarely used outside presentations
by government agencies and industry associations. Most of the Brazilian
practitioners I interviewed had little interest in Brazilian software develop-
ment, but were instead keen on expanding and improving in Brazil the
practice of software development as understood globally.

While recognizing the global nature of the software practice, however,
we must also note the extent to which the practice of software develop-
ment is established in different places. The map discussed earlier illustrates
this variation. Some areas (the two coasts of North America and most of
Europe) are covered thoroughly. In other regions, the visitors appear either

100 Chapter 4

in smaller clusters or individually. Note that while the map represents traf-
fic to a site hosted in Brazil, the visitors (represented by the points on the
map) come predominantly from Europe and North America. Maps of peo-
ple interested in other software technologies demonstrate similar patterns.

Official statistics confirm the impression that software developers are
concentrated in specific places. In the United States, the number of com-
puter professionals can be estimated at around 3 million people (about 1
percent of the population and 2 percent of the employed). Brazil likely
has about one-twentieth as much (and one-tenth as much per capita). In
Rio de Janeiro computer professionals account for about 20,000 residents
of the city, roughly one-tenth of the number of computer professionals
working in the San Francisco Bay Area (which has a somewhat smaller total
population).9

This already substantial difference is amplified tremendously if instead
of simply counting people, we look at the nature of their work. There is
a general impression among software developers in Brazil that the most
important software employers are based in specific places, such as Silicon

Figure 4.3
LuaForge.org downloads, January 2007–April 2009, South America. (See notes for

figure 4.1.)

Software Brasileiro 101

Valley. A look at the association between market capitalization and loca-
tion confirms this in the starkest way. In the spring of 2008 the value of
publicly traded “software development” and “computer services” compa-
nies headquartered in the San Francisco Bay Area added up to nearly half a
trillion dollars, over 37 percent of the total valuation of public companies
in those categories traded on the US markets (which includes most of the
public non-US companies), corresponding to about $2.2 million per com-
puter professional employed in the area. With another 23 percent of the
valuation attributable to the second metropolitan area (Seattle, $4.3 million
per computer professional), the software and computer services companies
in the rest of the world added up to less than 40 percent of the total. The
software industry in a place like Rio de Janeiro is tiny in comparison with
the larger centers of the software world. The only publicly traded company
based in Rio and engaged in this sector at the time had a market capitaliza-
tion of about half a billion dollars—about one-thousandth as much as the
San Francisco Bay Area’s share and roughly the price of a handful of “aver-
age” venture-backed companies in the United States.10

Perhaps even more important, software platforms used by software
developers worldwide also come from a small number of places. Software
developers in Rio de Janeiro, for example, work primarily with two operat-
ing systems: Microsoft Windows and Linux. While the former is unambigu-
ously associated with a specific place,11 Linux is often described as a globally
distributed project, including, in fact, a number of prominent contribu-
tors from Brazil. A mapping of the addresses included with the names of
people credited in a 2007 Linux release, shown in figure 4.4, however, again
points to a substantial centralization, with the largest dot on the map again
appearing on the West Coast of the United States.12 Other kinds of software
platforms—for example, databases and programming languages, whether
proprietary or open source—are similarly associated primarily with a small
set of places.

To explain this centralization, one could point to the concentration of
venture capital and investors’ reluctance to put their money in remote com-
panies, especially those located far from the established centers (e.g., Zook
2002; Powell et al. 2002). We could wonder if places like Rio de Janeiro just
lack sufficiently smart people, perhaps looking for the flaws in their educa-
tion systems or at their loss of smart people to “brain drain.”13 We could
investigate whether the governments of those places inhibit formation of
new ventures through unnecessary regulation.

It would be wrong, however, to stress any one factor as responsible
for the concentration of the software practice. Reproduction of practice

102 Chapter 4

involves re-creation of a system of relationships between many elements
of the practice, most of which are mobile only to a limited extent. People
who are unable or unwilling to move to the places where the practice is well
established must re-create it locally piece by piece, importing some of the
elements and seeking local substitutes for the others. The many challenges
involved in this process of reassembly are explored throughout the book.
The difficulty of re-creating in full a complex practice ensures that new
central sites rise to prominence only infrequently. In most cases, it is the
decline of formerly central sites and the rise of new ones (for example, the
rise of Silicon Valley as the rival of the Boston–Washington corridor) that
poses a puzzle rather than their stability.14

Even simply establishing a peripheral site typically requires extended
work by many actors, who must unite their resources. This process can be
complicated by the fact that the local actors must often make a difficult
choice between trusting other local practitioners to deliver some of the ele-
ments of the practice and attempting to import those elements directly
from the centers. The rest of this chapter explores the history of such efforts
in Brazil, and more specifically in Rio de Janeiro.15

Figure 4.4
The location of the Linux contributors credited in the 2007 release. The map shows

the location of addresses included in the credits file for Linux 2.6.22.8. The addresses

within 100km are merged and represented by a single larger circle (the area is pro-

portional to the number of people included in the location).

Software Brasileiro 103

A Brazilian MIT

In 1930 Getúlio Vargas, the governor of Brazil’s southern state of Rio
Grande do Sul, led a march on Rio de Janeiro, ending Brazil’s “Old Repub-
lic” and starting a new era in Brazilian history. Vargas brought together a
coalition of forces, known as the Liberal Alliance, which included as one of
its key constituencies “the Lieutenants,” a movement of lower-ranked army
officers seeking a wide range of progressive reforms. Among the Lieutenants
was Casimiro Montenegro, an army pilot and an aviation enthusiast. Once
the revolution was won, Montenegro turned his efforts to creating an air-
mail network and otherwise popularizing aviation (Morais 2006).

A decade later, as World War II was escalating in Europe, the United
States was seeking new allies, including those in Latin America. After some
wavering between the Allies and the Axis, Vargas entered a military alliance
with the United States, using it to strengthen both Brazil’s industrial posi-
tion and its military power by drawing on American technology. In 1943,
Montenegro went to the United States to negotiate a purchase of airplanes
for Brazil. While there, he visited Boston and was taken on a tour of MIT by
a Brazilian aviator who used to work under his command and who was at
that point studying aeronautic engineering at MIT. The visit inspired Mon-
tenegro to start planning a “Brazilian MIT”—a higher education institution
focused on aeronautics, modeled closely on its American counterpart, and
built with the support of MIT (Botelho 1999; Morais 2006). As Montenegro
saw it, the future success of aviation in Brazil required not just pilots and
airstrips but also local aviation engineers.

Two years later, Richard Smith, a professor of aeronautic engineering at
MIT, visited Rio de Janeiro, presenting what became known as the “Smith
Plan.” The plan involved creation of a large research center, as well as a semi-
civilian educational institution associated with it, which became known as
the “Technological Institute of Aeronautics” or “ITA.” Smith insisted that
ITA closely follow the American model, from guarantees of academic free-
dom to its faculty and students to the use of a campus as a model of spatial
organization of the institute. Montenegro, who was appointed as the head
of ITA, embraced Smith’s position enthusiastically (Morais 2006). The first
group of ITA students started classes in the early 1950s, first in Rio de Janeiro,
but soon moving to the new campus in São José dos Campos, a small town
located three hundred kilometers away from Rio and hundred kilometers
away from São Paulo—a location intended to isolate ITA from Brazilian poli-
tics, which Montenegro feared would interfere with the reproduction of the
American system of education. Most of the faculty—“the Wallauscheks, the

104 Chapter 4

Theodorensens and the Schrenks” as Morais (2006) calls them—were then
contracted and brought to this enclave from MIT.

Around 1960, a group of ITA students, led by one of the imported profes-
sors, took a tour of Europe, which included a visit to Bull, the French com-
puter maker. Upon return, the students proceeded to build “Zezinho”—a
machine that became known as the first computer ever built in Brazil.
While earning a place in the annals of Brazilian history and indicative of
ITA’s position in Brazil’s education system, Zezinho was disassembled soon
after being constructed, its parts reused for other electronics projects. The
team that created Zezinho was disassembled in much the same way. One
of its creators left Brazil the same year for a master’s and then a PhD at MIT
(Dantas 1988), returning to Brazil only years later. Many of his classmates
similarly headed north for graduate studies, finding few opportunities to
apply their skills in Brazil.

For Brazilian engineers to be able to practice making computers and soft-
ware in Brazil, another set of practices had to be established first: those
involving using computers. I describe one of the origins of such practices in
the following section.

Governing with an Electronic Brain

Starting in 1920, the Brazilian census began using mechanical tabulat-
ing machines supplied by IBM. In preparation for the 1960 census, the
American suppliers suggested that IBGE, the organization responsible for
the census, use an electronic computer for processing census data—as the
US Census Bureau had done since 1951. IBGE originally planned to post-
pone the transition until the 1970 census, but the election of Juscelino
Kubitschek in 1956 changed this plan. Running on a modernizing plat-
form, Kubitschek promised to achieve “fifty years in five” in terms of eco-
nomic and social development. Performing a computerized census became
a matter of national pride (Senra 2007).

The new head of IBGE approved a purchase of “an electronic brain”—a
UNIVAC 1105, delivered in the beginning of 1960 by Remington Rand.16

The electronic census, however, turned into the biggest disaster in the his-
tory of Brazilian statistics. The machine suffered from all imaginable prob-
lems and in 1964 had to be turned off altogether for several months (Freire
1993, 27). The results of the 1960 census were not fully tabulated until fif-
teen years later, in 1975. While IBGE has never agreed on the cause of the
disaster, Freire (1993) and the people I interviewed who worked with IT at
IBGE in the 1960s and 1970s typically point to problems that can be grouped

Software Brasileiro 105

into two classes: those inherent in the UNIVAC itself (described as a “fragile”
machine) and the local problems specific to the Brazilian context (the lack
of parts, the lack of trained personnel, and various organizational problems).

Unlike the later computers that relied solely on transistors, UNIVAC
1105 belonged to the generation of computers that relied, in part, on thou-
sands of vacuum tubes for data processing. It was a massive machine that
required quite a bit of energy and powerful air-conditioning (normally
pumped through a raised floor). Installing such computers and getting
them to work was quite complicated even in the United States. The UNI-
VAC had a long way to go in becoming disembedded and mobile.

This “fragile” computer was brought by IBGE to a context that was par-
ticularly unfriendly toward it. One of my interviewees, for example, talked
about IBGE’s unfortunate decision to use punch cards made in Brazil. The
low-quality paper used for the punch cards left paper fibers in the punch
card reader, which then had to be deactivated and cleaned. Parts ordered
from the United States were often slow to arrive (Dantas 1988; Freire 1993).

Even more serious was the problem with staffing. IBGE’s computing
projects created a need for people who could program and operate com-
puters. To address this, IBGE selected a group of Brazilians and sent them
to the United States for training. Unfortunately, subsequent gaps in fund-
ing (common in Brazil then as they are today) led many of the trained
operators to look for other jobs, leaving those who remained to pick up the
pieces. As the government soon recognized, taking new people unfamiliar
with computers and training them abroad each time would not work as a
long-term solution: IBGE needed a broader local market of people trained
to operate and program computers. The solution lay in increased coopera-
tion with Brazilian universities, and in particular with PUC-Rio, located in
the same city as IBGE. In 1965, PUC-Rio received another computer, in
addition to the one it had been given in 1960.17

Finally, UNIVAC did not fit well into the turbulent organizational cli-
mate of IBGE at the time. While some of the problems were rectified, what
emerged in the long term was a solution that put some distance between
the Brazilian government and its computers: unable to replicate the neces-
sary organizational climate internally, the Brazilian government routinely
outsources many of its IT needs, to companies that are often a lot more
similar to their American counterparts than Brazilian government agencies
are to theirs. With those adjustments in place, however, the Brazilian gov-
ernment over time made important steps toward becoming a competent
user of information technology (see Evans 1995; Tigre 2003), thus provid-
ing an important component for the emerging system of practices.

106 Chapter 4

Informática at PUC-Rio

The same year that UNIVAC 1105 was purchased for IBGE, PUC-Rio
received a B205 computer, made by Burroughs. B205 was tiny in compari-
son with the UNIVAC (weighing just about one ton), cost half as much
(around US$1.5 million), consumed half as much energy while running
(70 kVa, about the same as one thousand incandescent lamps), and had
half the memory (around 16kB, enough to store a few pages of text).18 The
machine was administered by the newly established Data Processing Center
(CPD), which was staffed almost exclusively by PUC students (Staa 2003).

Arndt von Staa, now a professor at PUC-Rio, joined PUC in 1961 as an
undergraduate in mechanical engineering and soon started working at the
CPD. There, in 1963, he met Carlos Lucena, the person most often men-
tioned by many of my interviewees as the pioneer of Brazilian computer sci-
ence. Lucena himself had started an undergraduate degree in mathematical
economics the year before. Many of the senior faculty members in the PUC
Department of Informatics today had started their undergraduate degrees
at PUC around the same time in fields such as mathematics, economics, or
engineering.19

In 1965 PUC received a yet smaller computer—the size of a desk—which
made it possible to offer the first computing course, based in the recently
created Department of Mathematics (Staa 2003). In 1967 yet another com-
puter was bought and several of the students, including Carlos Lucena,
spent three months at the University of Waterloo in Canada, following a
visit to South America by the head of Waterloo’s computing center. This
laid the foundation for a link between the yet-to-be established Department
of Informatics and Waterloo’s Computer Systems Group, which has lasted
to this day.

The same year PUC opened its own master’s program, in which many
of the classes were taught by the students themselves. Staa (2003) describes
the strange “bootstrap” phenomena involved in starting a program without
certified personnel:

The most curious things happened, such as for, example, a student defending his

master’s thesis having as his advisor a “professor” who had not yet defended his.

“Bootstrap” phenomena. Without such phenomena, nothing could have been ac-

complished. (25; my translation)

Staa uses the term “bootstrap” to describe the establishment of the master’s
program. While this term is often used colloquially, to refer to achieving
something without outside help, Staa invokes the technical sense of this

Software Brasileiro 107

term, which originated in computer science in the 1950s, referring to the
different solutions to the “chicken and egg” problems involved in starting
(or “booting”) a computer.

One of the decisions made at PUC in 1967 was the name of the pro-
gram, which soon became the name of the field in Portuguese. Staa (2003)
describes the decision as follows:

The name of the program came after a long discussion, to decide whether we should

brazilianize the term Computer Science of the Americans or the word Informatique of

the French. Informatique won, as we considered it a more inclusive term. The first

neologism of the field was thus born. It was a master’s program in which one gave

classes to others, and everyone was trying to learn together everything that was new.

(25; my translation)

The resulting term “informática” has since established itself as a normal
Portuguese word, extending the language to make it appropriate for the
discussion of the new practice. Most of my interviewees today use it as a
natural part of their language, applying it also to themselves, as in Jason’s
description of himself as “an informática person” (uma pessoa da informática).
At the time, however, choosing the term was a decision that had yet to be
made, one of the many decisions that would eventually help shape the
local context. (Over the following decades the meaning of the Portuguese
term “informática” has broadened to approach that of the English term
“IT,” with the term “ciência da computação”—literally “computing sci-
ence”—becoming the preferred name for computer science as an academic
discipline.)

The term informática was soon incorporated into the name of a new
department: “Departamento de Informática.” Many of the professors
employed by the new department, including the head of its postgraduate
program, had no doctoral degrees, but the situation was soon remedied
after a number of them completed doctoral programs abroad, returning to
Brazil in the early 1970s. Several years later, the department opened its own
doctoral program, granting its first degree in 1979.

National Informatics Policy

By the 1970s the increasing demand for computers made the Brazilian gov-
ernment worried about the growing cost of imported computers, many of
which were underutilized, having been acquired for the status they brought
to the agencies (Dantas 1988). A small agency called CAPRE was set up in
1972 to rationalize the purchase of computing equipment to avoid wast-
ing precious foreign currency. CAPRE was staffed by representatives of a

108 Chapter 4

group that did not exist until a few years prior, called by some authors the
“frustrated nationalist técnicos” (Evans 1995) or “anti-dependency guerril-
las” (Adler 1986, 1987). Those were Brazilian engineers educated in places
like ITA and PUC-Rio, some of whom had received postgraduate degrees
abroad. While some of them stayed in academia (as, e.g., did Carlos Lucena
and Arndt von Staa), those who looked for jobs outside the universities
saw few options that they deemed worthy of their skills. In the intellectual
climate strongly influenced by Marxist thought and dependency theory
(Frank 1966; Dos Santos 1970), some of them perceived this dearth of inter-
esting technical jobs as indicative of Brazil’s broader dependence on the
United States and internal social problems (see Evans 1995).

With the establishment of CAPRE, the frustrated engineers realized that
the organization’s mandate could be used as a tool of industrial policy that
would aim to create a local computer industry, by introducing restrictions
on computer imports and thus “reserving” some of the Brazilian com-
puter market for the local manufacturers. This policy consequently became
known as “the market reserve.” A number of successful local research proj-
ects suggested that building computers locally should be feasible. Ivan da
Costa Marques, a graduate of ITA who had recently returned from doing a
PhD in Electrical Engineering at Berkeley and was working at UFRJ (Rio’s
federal university) promoted the idea of building computers in Brazil by
pointing to his own group’s success in extending the functionality of
an IBM computer. Looking outward to the technological developments
abroad, Brazilian engineers also saw other signs that there was a window
of opportunity for Brazilian technology. The world of computing appeared
to be transitioning from the earlier “mainframe” computers to the smaller
and cheaper “minicomputers” based on integrated circuits, which brought
a promise of renewed competition in the market that until the end of
the 1960s was thoroughly dominated by IBM. Minicomputers were also
increasingly assembled from parts supplied by a variety of vendors—parts
that Brazilian computer makers could in theory order independently and
assemble into their own configurations.

The political climate of the day was also in CAPRE’s favor. The soar-
ing oil prices had made the Brazilian government increasingly sensitive to
spending what was left of its foreign currency on foreign computers. (At the
time Brazil imported most of its oil.) Additionally, CAPRE’s proposals reso-
nated with the growing concerns by the Brazilian navy about its increasing
reliance on foreign computers in its naval vessels—a fact that did not sit
well with Brazil’s increasingly independent foreign policy. The navy thus
also threw its weight behind CAPRE’s project.

Software Brasileiro 109

It is important to recognize that neither CAPRE’s engineers, nor the Bra-
zilian navy, nor the Ministry of Planning (CAPRE’s head office) were seek-
ing to isolate Brazil from foreign influences. Rather, each group was looking
for a way to participate to the fullest extent possible in global practices that
they were engaged in and, more generally, to promote the modernization
of the country. As is often the case for peripheral actors, this presented all
of them with the choice of whether to focus on building relationships with
foreign suppliers of the requisite elements of their respective practice or to
build local alliances. In the early 1970s, the conditions seemed right for
such a local alliance.

In 1976 Ivan was invited to join CAPRE as a coordinator for computer
industry policy. Through his efforts, CAPRE implemented a new policy,
according to which foreign companies would only be allowed to produce
and sell minicomputers in Brazil if they made generous “technology trans-
fer” agreements with Brazilian partners. The largest companies, such as
IBM, chose to withdraw (though still providing mainframes), but some of
the smaller international companies accepted the deal as a way to enter
what would otherwise be IBM’s domain. Several national companies arose
in the process, later creating a strong lobby for continuation of the policy
(Evans 1995). The existence of such companies made possible (or, perhaps,
created a reason for) further computerization projects, strengthening the
Brazilian government’s position as one of the most competent users of
information technology among world governments.

At the end of 1970s, forces close to Brazil’s new government of General
Figueiredo entered the game, allegedly concerned with security of commu-
nications used by the Brazilian foreign service and finding CAPRE’s work
toward creating a national computer industry too slow (Dantas 1988). An
investigation by a military committee concluded that CAPRE’s focus on
computers overlooked the importance of local production of microchips
and software. CAPRE was replaced by a new agency, now run by the mili-
tary, with a mandate to radicalize the policy to achieve local production
of those crucial components—tasks that proved to be impossible due to
the tremendous economies of scale and network effects associated with the
newer generation of technology. Ivan and some of his colleagues, who were
no longer welcome in the government, went to work for the national com-
puter industry that they had helped create. This industry had a number
of successes. Some of these companies produced computers under a range
of “technology transfer” agreements. Some successfully cloned American
computers. Jason’s first computer, which he described in chapter 3, was
produced by Microdigital Eletrônica, based in São Paulo.

110 Chapter 4

The Liberalization

The new agency’s more aggressive policy was expressed in the Informatics
Law passed in 1984. However, 1984 was also the year when Brazil started
a transition toward democracy. The coalition of forces that had led to the
market reserve policy, already damaged by the military takeover (Marques
2000, 2003), started to fall apart. As the industrial policy became accountable
to Congress, industries that depended on computers, and whose frustration
with the inability to buy cheaper foreign technology had grown, found more
opportunities to express their opposition. In 1985 the United States threat-
ened Brazil with trade sanctions, responding to the increasing losses that
the restrictions brought to American companies (Luzio 1996). This threat
further increased the number of Brazilian industries that stood to lose from
the continued policy. As part of its negotiation with the United States, Brazil
made a commitment to phase out the market reserve by 1992 (Bastos 1994).

The end of the market reserve is sometimes seen as a tragic collapse of an
enlightened national policy under the pressure of neoliberal globalization
(e.g., Schoonmaker 2002). It is important to remember, however, that the
market reserve was itself an alliance in pursuit of globalization and its end
signified, above all, a desire on the part of many members of this alliance
to seek globalization by other means. As we saw in the history presented in
this chapter, many of the actors that have shaped the policy since the 1940s
were to a large extent driven by the same goal: finding a way to engage in
Brazil in the global practice of their choosing. Brazilian aviators like Casi-
miro Montenegro were seeking to establish aviation, but found it hard to
acquire airplanes and needed local engineers. Brazilian engineers, created
through the efforts of people like Montenegro, were looking for a way to
try their hand at the most exciting engineering projects of the twentieth
century, such as building computers. The Brazilian government was seek-
ing modern ways of measuring and governing its population, acquiring an
interest in using computers and needing programmers to program them.
As each group pursued its own globalization project and required elements
that had to be provided by members of different worlds of practice, they
had to decide when to rely on local practitioners and when to import the
original elements of the practice. The alliances between the local practi-
tioners of different trades were thus always marriages of convenience. By
1990, as Brazil was looking for change after two decades of oppressive mili-
tary rule, many were willing to reconsider their alliances. For many of my
interviewees, the end of the market reserve was a moment of awakening
that they only wish had come earlier.

Software Brasileiro 111

The opening of the Brazilian market to foreign computers decimated the
Brazilian computer industry, but also led to a dramatic expansion of com-
puter use in Brazil. (The causes of this expansion were many, though, and
included, among other things, the end of hyperinflation after the success of
the Plano Real in 1994.) The end of the market reserve also left Brazil with
a substantial number of people who were trained as electronics engineers
but now had few opportunities to work on design of hardware. Many of
those engineers found that they could transfer their skills to developing
software to run on imported hardware.20 Additionally, some took refuge
in local universities, where they started teaching. One of my interviewees,
once an electronics engineer, told me:

Jorge: And we, the electronics engineers, we realized that our space was
closing. There was no way for electronics to advance in Brazil. So, there
were many centers of microelectronics in Brazil, and now there is only
one — the only guys who were persistent, they continued. They are a kind of
intellectual reserve in this area. [. . .] They are still making chips. They make
a Java chip now. [. . .] But we here moved to software.

As Jorge saw it, developing software was an easier task than many of the
ones he had faced as an electronics engineer. In a similar way, many former
computer companies have transformed themselves into software factories.21

Around the same time (1988–1990), as a result of complex negotiations,
several Brazilian research centers were allowed to establish digital links with
BITNET hosts in the United States, thus becoming BITNET gateways for
Brazil (Carvalho 2006). In 1992, Rio and Brazil became connected to the
Internet, a new computer network that was rapidly growing in popular-
ity around the world.22 Access to the Internet enabled real-time access to
the World Wide Web, transforming the practice of software development.
“Then [in the 1980s] if you knew that the person knew about it, you would
spend more time trying to talk to him,” explains one of my interviewees
contrasting his experience before and after the arrival of the Internet, “It’s
not necessary anymore. You don’t need to, actually . . . And again, this is
primarily due to the Internet. You can get any kind of information you
want on the Internet.”23 Students studying in Brazilian universities could
increasingly complement the knowledge of their professors with direct use
of foreign technical documentation.

It is worth repeating—as this fact too often appears to be lost on many
of my younger interviewees, who are often quick to make unfavorable
comparisons between the limited knowledge of their university professors
and the wealth of information accessible through the Internet—that the

112 Chapter 4

Internet did not come to Brazil by itself. So easily taken for granted as the
basic infrastructure of the modern software practice, access to the Internet
is a complex artifact that required both technical and political negotiations.
It became possible in Brazil because of the accumulation of technical exper-
tise in Brazilian universities and the Brazilian government who had over
time learned to coordinate their globalization projects.

The late 1990s were a turbulent period for Brazilian informatics, a time of
change and much uncertainty about what was possible in the future. Such
uncertainty led to both fear and wild dreams. By 2005, when I had started
my interviews in Rio de Janeiro, the dust had largely settled and many of
my interviewees were ready to share with me what they thought was pos-
sible in Brazil and what was not. Access to knowledge was easy—through the
Internet. The Internet also served as a great source of free software platforms.
There was also no shortage of local customers willing to pay people who
could convert knowledge and disembedded code found on the Internet into
concrete solutions to their globalization needs. On the other hand, access to
capital and foreign markets was hard. The bureaucratic hurdles were there
to stay. The most reliable path to success appeared to involve finding local
clients, building strong relationships with them, then gradually expanding
a service business. The chapters that follow explore this and other strategies
for pursuing the practice of software development in Rio de Janeiro.

Free / Open Source Software

Before proceeding, however, I must make a note about another important
technological development of the late 1990s and early 2000s: the growing
popularity of open source software. As I noted in chapter 0, distribution of
software on liberal terms goes back to the earliest days of software devel-
opment. By the 1970s, however, attempts to secure intellectual property in
software were becoming quite common. A new intellectual property regime,
which the United States introduced in the early 1980s and then quickly
forced on other countries, gave further support to the practice of distributing
software under increasingly restrictive licenses.24 By the second half of the
1990s, however, software distributed under liberal terms was experiencing a
resurgence, reaping the fruits of the efforts of many people who had strug-
gled through the 1980s and early 1990s to adapt older practices of software
sharing to the new intellectual property regime (see Schwarz and Takhteyev
2010). Such software, rebranded in the late 1990s as “open source,” has
become especially well represented among software platforms, that is, soft-
ware upon which other software is built. While Windows has remained by

Software Brasileiro 113

far the most popular operating system for casual users of software, a substan-
tial part (and by some counts most) of the deeper layers of the world’s IT
infrastructure today run on Linux, an open source operating system.25

The rise of free software has undoubtedly been a boon to peripheral
programmers. In the 1970s, CAPRE’s engineers had to fight to get foreign
companies to license their technology to Brazilian manufacturers. Today
Brazilian programmers, on the other hand, are granted the right to inspect,
modify, and redistribute some of the world’s most advanced software tech-
nology without even having to ask for it. My interviewees take note of this.
Some of them express great enthusiasm about it. Others take it as a matter
of fact—this just happens to be the way the world of software works today.
Some of them use open source software today because they subscribe to its
vision, often recognizing such vision as a key element of today’s software
culture. Others use it because it works well and does not cost any money.

The benefits of free software have also been recognized by actors within
Brazil’s government, which has pursued, since 2003, a policy of promoting
such software for the government’s own computing needs (Schoonmaker
2009; Shaw 2011). Software developers I have talked to since 2005 seem to
take a somewhat ambivalent attitude toward this policy. Some welcome it
in principle, but are doubtful that it would have much effect in the hands
of the government bureaucracy. Others are wary of the government hav-
ing big ideas, regardless of what those ideas might be. (This in many ways
reflects the general attitude that Brazil’s middle class often seems to take
toward government programs.)

Using open source software, however, is not the same as developing it.
While some of my interviewees have worked on hobby projects that they
released under free software licenses (or, more often, plan to release one
day, when they have time), most of them spend the majority of their pro-
gramming time working on proprietary software for money. Some express
no discomfort with this fact. Other say that spending time working on
open source software would of course be great, but they cannot afford to
work for free. Jobs that pay developers to work on interesting open source
projects exist in theory, but are hard to find in practice, especially in Rio.
Some consider setting up a business around an open source project, but
again find this difficult in practice and move on to other things. Alta, the
company whose story I tell in the next chapter, provides an example of
this. The projects that I explore in chapters 6–8, however, are open source
projects, which aim to not only release software under free licenses, but
also to engage (in different ways) with remote communities of users and
collaborators.

5 Downtown Professionals

It was late March 2007 and I was in a kombi, speeding in the direction
of “Centro,” Rio’s commercial district. Taking elevated highways from the
campus of Rio’s Federal University on Ilha do Fundão, the minivan flew
over many of Rio’s favelas, finally landing on Avenida Getúlio Vargas, a
block-wide avenue, cleared in the mid-twentieth century to modernize the
city. I got off at Rua Uruguaiana, a pedestrian street that serves as an entry
point to a few remaining blocks of old windy streets, lined with lunch res-
taurants and office fashion stores, and filled with vendors selling pirated
films and counterfeit watches. After two blocks, I arrived at Largo da Cari-
oca, a wide square at the heart of Rio’s business district. There I waited for
Rodrigo Miranda who was going to take me to “Alta,” a successful Java com-
pany that, I was hoping, could become one of the sites of my ethnography.
Each minute of waiting felt like an hour in Rio’s heat, but I knew it was
worth the wait. I had spent the previous few weeks trying unsuccessfully
to get myself allowed to come and spend a month inside a Java company.
Rodrigo’s introduction could make all the difference.

When Rodrigo arrived a few minutes later, we headed south, crossing
Avenida Rio Branco, and entering a tall building that was all too familiar
to me—I had by that point interviewed people from no fewer than three
companies in that building. As is typical in such office buildings in Rio, the
lobby had a system of “optimized” elevators, each going only to a range of
ten floors, some of them with long lines. Joining the longest line we ran
into several guys Rodrigo knew; it turned out all of them worked for Alta.
We followed them to the office, which Rodrigo entered without introduc-
ing himself at the door, as if his presence there was perfectly natural. We
paused only briefly in the lobby to appreciate the fancy engraved logo on
the glass panel that separated the lobby from a large room.

As we entered the large room, I saw three dozen tables, organized into
bays and separated by short dividers. Everyone had exactly the same

116 Chapter 5

table—including the owners of the company. All but one person looked
under thirty. It seemed like a by-the-book implementation of a Silicon
Valley startup from the late 1990s, complete with a beanbag. I followed
Rodrigo as he shook hands with people, nodding, making our way toward
“Felipe” and “Luís,” seated at a desk in the corner. It turned out that they
were two of the three cofounders of Alta.

The four of us went to a conference room where Rodrigo introduced me
as a Berkeley doctoral student and a Herculoid. “Herculoids” was the name of
Rodrigo’s private mailing list, which he used mostly to forward technology
news. When introducing two subscribers who had not met before, Rodrigo
almost always introduced them to each other as “Herculoids.” (“It’s like
saying that you are a friend,” he explained to me after we left Alta.)

Rodrigo summarized my research project and talked about what an
“opportunity” it had been to be interviewed by me and how he strongly
recommended that Felipe and Luís agree to be interviewed as well. The
two seemed unsure of what to make of me but started talking about their
company. They were two of the three cofounders, all recent graduates of
PUC-Rio’s Computational Engineering program. Felipe was now increas-
ingly doing “the commercial part.” Luís was working on a new company
inside Alta. The third co-founder, “Eduardo,” was Alta’s main “technical
guy.” Earlier they all used to work with any programming language a client
asked for, but now they were trying to focus on Java. Ninety-nine percent of
their work was now in Java, said Felipe. “99.9 percent,” Luís corrected him.

This chapter looks at Alta as a relatively typical context of software work
in Rio de Janeiro, providing a background for the later discussion of Lua
and Kepler. I use the word “typical” with caution, however. Already in
2007, Alta was a highly successful company that in many ways seemed
to have played all of its cards right. When I returned to Alta a year and a
half later, I discovered that it had grown substantially, employing close to
a hundred people and occupying three floors of a downtown building. It
was now responsible for the main user-facing web site of a major Brazilian
brand. While Alta was doing what most other Rio software companies were
trying to do, it was clearly pursuing this strategy more successfully than
many of my 2005 interviewees. I will try in this chapter to point out some
of the reasons for Alta’s success, but this will not be my focus. Rather, I look
at Alta as a successful implementation of a particular approach to periph-
eral engagement in a global world of practice: bringing global technology
to local clients and acting as local representatives of the global world of
practice. While operating primarily with “standard” foreign technology,
this approach involves an arms-length relationship with foreign centers of

Downtown Professionals 117

the software world, combined with intense engagement with local organi-
zations. Later chapters introduce two other configurations. One of those
involves production of technology with global significance locally, but in
relative isolation from local needs. Another, a more complex case, involves
an attempt to bring into alignment a wide range of resources, both local
and global, in production of a global project aligned with local needs.

The Birth of a Software Firm

As I later learned from my interviews with Felipe, Luís, and others, the
company started in 2003, four years before my arrival there, when the three
cofounders left “Kubix,” another company where they had all worked dur-
ing most of their university years. Unsatisfied with the limited growth
opportunities offered by Kubix, the three decided to start their own com-
pany, taking advantage of PUC’s startup incubator, which provided cheap
office space on the PUC campus, free phone and Internet, and help with
tasks like marketing.1 While most software companies in Rio work in soft-
ware consulting, building custom software for specific clients, entry into
the incubator required a business plan that would involve marketing a soft-
ware product. Felipe, Luís, and Eduardo wrote a business plan around com-
mercializing Eduardo’s recently completed master’s thesis, which proposed
a method for integrating enterprise information systems. Two months
later Alta opened its doors in the incubator with an initial investment of
R$18,000, to which each of the cofounders contributed equally from their
Kubix savings.

The product envisioned by Alta’s business plan—“InterJ”—never fully
materialized, and from my conversations with Alta’s founders it is hard
to tell exactly how seriously they had taken it. The conventional wisdom
in Rio de Janeiro is that a software product company cannot survive in the
city. (“It’s not California,” many developers explain.) The incubator, how-
ever, wanted to see a product plan and Eduardo’s thesis made it possible to
tell a believable story. The founders themselves seemed to half-believe the
plan, putting an intern to work on polishing Eduardo’s code, while debat-
ing among themselves whether to sell licenses for the product or to release
it as open source and hope to make some money on related services. They
decided to go with the open source option, but were not ready to bet on the
product’s success, if only for the lack of anything to bet: the starting capital
of R$18,000 hardly provided a financial foundation for a product launch.
Launching a software product requires a substantial upfront investment,
regardless of the license under which the product is distributed. While

118 Chapter 5

successful open source projects do often end up attracting contributions
from a community that forms around them, building such a community is
no easy feat and itself requires a substantial investment of effort (as we will
see later in chapter 8). Despite the founders’ ability to imagine a grand open
source future for InterJ, their immediate concerns were with the short-term
survival of Alta.

When an opportunity came to do some work for Petrobras, the fledgling
entrepreneurs decided to take it.

Felipe: This started right in the beginning, because it was one of Eduardo’s
contacts. A friend of his who worked at Petrobras needed a company that
could do maintenance on this contract, with intranet in this case, and so
he asked if we were available. And we were: “Well, of course, let’s start
earning money and get into Petrobras, which is a large company . . .” And
so we started.

The company proceeded to accept a range of service contracts, which
involved software development in different languages, training courses,
and other tasks.

One of their earliest projects involved Lua. “Fernando,” a PUC student
who had worked with Felipe and Luís at Kubix, wrote a library (a set of
software modules) for linking Lua with Java—as an assignment for a class—
and made a presentation about it at PUC. Rodrigo Miranda attended the
presentation and offered to pay for some additional features from Kepler’s
grant. Because Rodrigo’s grant did not allow him to pay Fernando directly,
Rodrigo made a contract with Alta, which then hired Fernando to work
on the desired features. Luís and Eduardo soon joined too, contributing to
other Kepler modules as well. Since the company was just starting off, any
income was welcome. But it was not so much about the money, stressed the
founders. Above all, they wanted to have a good relationship with Rodrigo,
who was ten years their senior and knew a lot of people. The investment
in personal relations paid off: Rodrigo later matched Alta with its first large
project, which the company was later able to use as a success story when
making proposals to other clients. The founders remembered the favor. “I
think that if we hadn’t gotten this project Alta wouldn’t even exist today,”
said Felipe. (The fact that I was allowed to spend time at Alta and write
about it perhaps had a lot to do with this as well.)

As the consulting business grew, InterJ was increasingly put aside.

Felipe: So, from the start we moved our focus a little away from investing
in InterJ, investing in integration, and from there it just grew. And as time
went by, we were working more and more with development of web appli-

Downtown Professionals 119

cations, development of solutions on demand for clients, you know. And
InterJ was something we were putting more and more to the side.

When some time later Alta became an official “partner” of “EIT,” a large
software company based in California, the fate of InterJ was sealed:

Felipe: And a moment came also when we managed to get a partnership
with a large, multinational company, which is EIT. We got a partnership
with them, and they are one of the main companies that sell integration
software. So, we decided to give priority to learning their platform, and
to try to offer services on top of it. And this closed the coffin on InterJ.
There was a moment when we decided to give priority to working with the
technology that is the market leader. Which was EIT. [. . .] Over there, they
have developers, in the United States, Indians, all working to improve this
system. And we here have nobody. [EIT] was light years ahead.

Alta’s founders’ stories about InterJ have a touch of nostalgia, though seem-
ingly not so much the painful nostalgia of squashed dreams as the sen-
timental memories of lost naiveté. The decision paid off, however. Early
consulting revenues allowed Alta’s founders to hire their most talented
friends. The partnership with EIT, a household name in Java circles, became
a source of larger and larger contracts. Alta was invariably considered a suc-
cess by those who knew of it. When I started frequenting Alta’s office in
June 2007, the company’s only problem seemed to be finding place for all
the new developers it was hiring. This problem was resolved two months
later when Alta got the chance to rent an additional, even shinier, office in
the same building.

The Cutting Edge

While more successful than some of its competitors, Alta was hardly origi-
nal in its strategy, using global technology to solve local problems, provid-
ing customized IT solutions based on Java web technology to local clients.
(Or, as some of the examples in this chapter suggest, adapting local prob-
lems to fit the available global technology.) According to the PowerPoint
presentation given to new employees, the company’s focus was on “con-
sulting, integration and development of applications based on new tech-
nologies,” with the last words shown in big, bold letters. The founders and
employees I talked to at Alta were equally excited about the company’s
commitment to using the most advanced technology, “technology at the
tip” (tecnologia de ponta), a term that could be likened to the English “cut-
ting-edge.” Another term I heard frequently was “tecnologia padrão.” While

120 Chapter 5

padrão literally means “standard,” it could perhaps be better translated as
“world standard,” since it typically connotes the quality rarely found in
Brazil, rather than the mediocrity that is sometimes suggested by the word
“standard” when used in the United States.

As later slides explained, in 2007 using new technology meant building
web applications in Java. Alta was “a 100% Java company,” declared yet
another slide. In reality, of course, conservative clients and the need to
maintain legacy systems often required Alta’s engineers to work on some-
what outdated technology. What the company advertised, however, was
its ability and willingness to use the latest solutions. Alta’s developers, or,
rather “technology professionals,” as they were called in the same presenta-
tion, followed the latest technology news, often in English, and peppered
their speech with portuguesified English phrases, from technical terms and
business terms (“essa delivery,” “o deploy”) to general phrases (“é feeling
mesmo”).

The company’s mission statement, stated in the same PowerPoint pre-
sentation, however, presented Alta’s other, local side: “to transform your
desires into reality through IT services tailored to your needs.” Rather than
selling a uniform product, Alta cultivated durable relationships with local
clients, most of whom were quite literally within walking distance from
Alta’s office. Understanding the clients and their needs was a skill in which
Alta’s more senior personnel took pride. Alta’s relationship with some of
its clients was often so strong and durable that the company almost acted
the part of an IT department for some of them. “Intermercado,” a large
Brazilian retail conglomerate and Alta’s largest client, retained nearly half
of Alta’s employees on a per month basis, paying a monthly rate regardless
of whether there was any work.

In a way, Alta was thus positioned at “the cutting edge” in the sense
not only of using the latest global technology, but also of being at the
frontier of the global world of software, a point where its cutting edge met
the thicket of Brazilian organizational reality. Alta’s position often seemed
to put it in an ambivalent relationship with its local context. Alta had to
convince clients that it was sufficiently local to understand their needs in
a way that true outsiders would not. Alta’s engineers, however, also needed
to maintain their image as outsiders, the representatives of the global world
of technology, to help clients believe that their own global dreams would
come true with Alta’s help. As Alta’s engineers talked to me, an insider
coming from the heart of Silicon Valley, their position on the frontier of
the software world sometimes came across as a recognition of a handicap
that they urged me to consider. At times, however, I could sense a feeling

Downtown Professionals 121

of pride in their war stories: pride of surviving and thriving in this hostile
climate. I illustrate some of those points in the next section.

Skol with Fabio

A few weeks after my first visit to Alta, I went back to the office to meet
“Fabio,” one of Alta’s young managers whom I had encountered briefly on
my first visit. Fabio came downstairs and met me outside as soon as I called
him from the lobby, apologizing for being a minute late. He was dressed
informally, much like a typical engineer, though with more attention to
style. I noticed this mostly because of the stark contrast with the stylish
dress shirt that I had seen on him the previous time. As I later learned,
wearing clothes that strike a careful balance between dressy and hip was the
rule for Fabio, and today’s t-shirt was an exception. Perhaps noticing me
looking at his t-shirt, Fabio explained that he had a busy day, because they
had to deliver a project to a client. He would in fact have to go back later to
finish some work, he added.

The space in front of the building was covered with yellow plastic chairs,
all decorated with the logo of Skol, a popular beer brand. The number of
those chairs, almost all occupied, made me wonder if all of downtown’s
employees had decided to come out for a drink at the same time. I soon
realized that this was precisely the case: it was a Thursday, but Friday was a
holiday. “Happy hour,” Fabio said in English. We sat down at one of the few
free tables; Fabio leaned back in the plastic chair, lit a cigarette, and asked
a waiter for a large bottle of Skol, which soon arrived with two plastic cups.

The conversation returned to Fabio’s attire. He normally dressed up, he
explained, because he was now a minority partner in the firm and was
interacting with clients a bit. They needed to make a good impression. Also,
he was only in his mid-twenties, and clients tended to dismiss younger
people, he explained. So, he had to compensate for that by looking more
serious. “More like an adult,” he said. Otherwise, he explained, they would
think: “What does he know?” Also, he sat in the management section of
the room, Fabio continued. They were all together in one room, but there
was a management corner. They talked to clients in the conference room,
but the clients often wanted to see the office. Now, imagine, Fabio said, that
the client walks into the office and sees a guy in torn up clothes, with huge hair,
a giant beard. What does the client think? He thinks, “Awesome, this guy is a
nerd, he probably knows how to program!” But when they look at the manage-
ment corner, Fabio explained, they want to see people who are well dressed,
people who look like they would understand their business.

122 Chapter 5

We then talked about how Fabio had ended up at Alta. As was com-
mon in my interviews, the story featured a simultaneous immersion in the
global culture of software and in local social networks. It also showcased the
tensions between the notion of software development as a fun activity and
Fabio’s emerging understanding of himself as a “professional,” who was
not only participating in the labor market but also increasingly involved
in managing the labor of others. Fabio came to Alta in 2003, from Kubix,
where he had worked together with Alta’s founders who brought him
along to their new venture. Starting as an intern, Fabio earned a little under
R$400 a month. Of course, Fabio explained, he was then a newbie, a begin-
ner (he used two English words to describe his situation at the time.) As he
learned more, his salary rose dramatically. A good programmer would not
agree to work for less than R$3,000 and could ask for a lot more, Fabio told
me, without getting into the details of his own compensation. There are
limits on engineers’ salaries, however, say most developers, and to increase
their income further the most talented engineers typically move to man-
agement. Fabio was starting this transition this year. About a year and a
half ago, just before he graduated from the university, Fabio had become a
minority partner at Alta.

The talk of money seemed to bore Fabio, however. Let’s get back to pro-
gramming, he said eventually. I suggested that we talk about Fabio’s experi-
ence with Lua. Like his friend Fernando and Alta’s co-founders Luís and
Eduardo, Fabio was a contributor to one of Kepler’s projects. He had started
working with Lua back at PUC, Fabio explained. He took a class from
Roberto Ierusalimschy, and another one from Roberto’s spouse. Both had
programming assignments in Lua, and in the case of Roberto’s class the
task was to contribute something of value to the Lua community. While
some other PUC graduates I interviewed resented being required to learn
a “homegrown” programming language, Fabio took the assignments more
positively, since some of his friends at Kubix, including Luís, were fans
of Lua. (Luís in turn attributed his interest in using Lua to seeing it used
extensively in Tecgraf, a research lab at PUC.) When Fabio later needed
a final project for his engineering degree, Rodrigo, whom Fabio had met
through Luís, suggested a new version of a Lua programming editor, origi-
nally written by Luís and based on Eclipse, a popular software develop-
ment tool.

After finishing college Fabio continued to work on the tool together
with Fernando, getting paid a small amount from one of Rodrigo’s grants.
(As Fernando told me in a later interview, working on the project was one
of the many things he and Fabio did together on the weekends.) It was

Downtown Professionals 123

hard to find time for it, Fabio said, but he wanted to continue participat-
ing. He gave me two reasons. When you work with something all the time
you get tired of it, he said. He was working with EIT’s “eWeb” platform all
day, which he also found to be “very commercial.” Working on Lua was
a diversion. It was not serious commercial technology, he explained, not
something he would suggest to a client, but it was fun.

It was also about being a part of the Lua community, he added. When
he first started using Lua, Fabio explained, he began reading the Lua list
and seeing the announcements of people releasing their code. This helped
him realize the meaning of “open source.” “It’s an exchange community,”
he said, hence the need to contribute. But it was also a matter of personal
satisfaction. In any community, said Fabio, be it your samba group or your
church, you want to be known, be a member, be someone who has done
something for the community. From this, you get satisfaction. When he
released his editor, people replied: someone said “Great!” and another guy
wrote back and helped correct a mistake in the English used in Fabio’s code.
So there was feedback, and people were contributing back.

“Okay,” I said, “I understand the attractiveness of an open source com-
munity, but why Lua?” Fabio’s answer surprised me. The Lua community
offered him a space to participate, he explained. Not so with Java. Consider
Java, he continued. There are Java User Groups, like RioJUG. RioJUG had
about a thousand people on the list, but the level of discussion was very
low. There were probably three or four people who actually understand
the technology and who had good questions. The problem with Rio’s Java
list, continued Fabio, is that the number of people who understand Java is
low, but the number of people who think they understand it is high. Why?
Because Java is fashionable. The market seeks people who know Java. So
the guy gets a book, copies an example, runs it—now he “knows Java.”
Statistically, continued Fabio, there might be more “Java programmers”
in Brazil than in the United States. But the difference is in quality. “Those
people here, they don’t even know how to use Google!” he exclaimed.
“You have to use Google. Google is everyone’s daddy. Before asking a ques-
tion you have to think: someone probably had this problem before, so go
look in Google!” That’s something people on the Lua list know how to
do. And yes, of course you need to know English to make use of Google,
otherwise those thousands of results would be of little use. And half of
RioJUG people do not even know English! Fabio continued with increasing
passion, eventually moving on to Alta’s difficulties in finding good Java
programmers and the company’s need to hire “raw guys” and teach them
from scratch.

124 Chapter 5

Neither Fabio’s frustration with the local Java community nor his fas-
cination with the Lua community were unique to him. The complaint
that many Brazilian “programmers” do not know what they are doing is
something I heard quite frequently, not only from the graduates of elite
programs like PUC’s Department of Informatics but also from those who
themselves might be the source of frustration for PUC graduates. (Or, alter-
natively, they often talked about the incompetence of Brazilian manag-
ers or politicians. In either case the complains were often counterbalanced
with stories of Brazilians’ ingenuity in dealing with problems created by
their less capable countrymen.2)

Fabio’s praise for the Lua community is also repeated by everyone famil-
iar with the group. On the Brazilian side, most list members are former
graduates of the PUC-Rio Department of Informatics—Brazil’s best com-
puter science department. Even they, however, are eclipsed by the list’s
foreign members who can quickly answer the most complicated software
questions. The caliber of the foreign subscribers can probably best be
explained through self-selection: in order to discover Lua, still a somewhat
obscure language today and virtually unknown until a few years ago, most
of them went through dozens of programming languages, driven by curios-
ity and a search for perfection.

For Brazilian engineers like Fabio, Lua could thus be a ticket into a highly
exclusive international (or, one could say, foreign) community of develop-
ers, and an escape from the mediocrity of local groups like RioJUG. Links
to PUC and an early start on Lua give them relatively easy entry into this
community. Gaining comparable standing in a different group, e.g., the
Linux kernel developers, would be a lot harder. Eric Raymond (1999) talks
about the “ergosphere”—the space of work—as one of the key resources in
the open source community. According to Raymond, open source com-
munities are gift cultures, where one gains status by offering gifts to the
rest of the community. Open source gifts are solutions to technical prob-
lems. Much like in academic research, good problems—the ones that would
result in valued gifts that are not too costly to produce—are scarce. Ties
to Lua’s authors and Rodrigo gave PUC graduates like Fabio an opportu-
nity to identify good problems within a small but growing community, or
jump into an existing project. The results of their work thus enjoyed ample
downloads (one of the key measures of success in open source) and recogni-
tion within the community.

This success in the open source community, however, was hard to trans-
late into income in the Brazilian market. If Kepler developed more, it could
potentially allow them to make a realistic proposal to their clients, said

Downtown Professionals 125

Fabio. He was confident that this would happen eventually. He talked about
Rodrigo’s recent idea to “open” Kepler and invite more participation from
people outside (see chapter 8), saying that this would give people more con-
fidence in Kepler. (It would no longer be the “Kepler team” anymore, but
rather the “Kepler community” behind the code, explained Fabio, saying
both phrases in English.) But for now, he pointed out, there was no “case”
of Kepler, no large company using it. And Brazilian clients were not into
experimenting. When a client asks “Why use Java?” the answer is “Because
giant companies use it.” (Fabio rattled off names of a few large US com-
panies.) Compare this with Kepler, said Fabio. “Why use Kepler? Because
it’s good.” This just does not mean much to the clients. They would ask:
“Who is Rodrigo Miranda?” I know him, says Fabio, you know him, but
they don’t. “Who is Márcio? Who is Tiago?” Alta’s clients wouldn’t know.
They knew IBM and SAP.

The distinction between using “good” technology and the technology
clients wanted was not limited to Lua. During my time at Alta in 2007,
most of the company’s work was based on EIT’s eWeb. There was a strong
sense among Alta engineers that eWeb was no longer the best option, or
at least not in all cases. The developers’ attention turned increasingly to
the many open source alternatives, which offered a number of advantages.
First, open source was cool. Second, open source solutions were free, leaving
the customer to pay a larger portion of its budget to Alta for customiza-
tion. Finally, such solutions made it easier for the developers to fix the
bugs, since the code was open and there was more free documentation
online. For those reasons, Alta tried to move its clients to open source solu-
tions whenever possible. With the largest clients, however, Alta did not
have this luxury. Such clients typically had a prior relationship with EIT,
which sold them eWeb licenses and then offered to recommend a “solution
provider”—a local software company that would customize eWeb for the
customer’s needs. Alta was one such provider, but not the only one. When
a client such as Intermercado called Alta saying that EIT had suggested
Alta as a company that could implement an eWeb-based system, Alta’s
managers had to keep to themselves their opinions about advantages and
disadvantages of eWeb. Additionally, EIT typically assigned their own soft-
ware architects to supervise Alta’s work and to make sure that Alta was not
introducing any open source solutions that would serve as alternatives to
upgrading eWeb to a newer version, at a charge. As the client contemplated
whether the expensive upgrade was worth it, Alta’s engineers worked with
outdated technology, something the company would rather not talk about
in its presentation for the new employees.

126 Chapter 5

Building an Online Store

A few weeks later I was heading to Alta’s kitchenette to get some coffee
when I ran into Mauricio, one of the developers working under Fabio’s
supervision. “Follow me,” he said, and led me to the corridor, where Fabio
was smoking with a cup of coffee. We exchanged some small talk. “Now
let’s talk seriously,” Fabio then said suddenly. Intermercado people had got-
ten back to him about the scheduling program that Alta had just delivered
to them. They said there had to be a way to set events that would start on
one day and continue to the next. He already thought about it and it wasn’t
so bad. It would require some changes to the database, some to the inter-
face. He started explaining a solution. Mauricio interrupted him: “Why not
just have the user enter the beginning and the duration of the event?”
“Ah, good idea,” Fabio replied. He started thinking out loud, following the
suggestion made by Mauricio. This will make it much easier. So, we just let
them do this, and then have JavaScript show the end time. Again, the data-
base would need to be changed, as well as some of the user interface. Fabio
listed the specific things that would need to be done, walking through the
steps that the user would have to go through. He then turned to how long
the change would take. “Three days?” he asked Mauricio. “A couple of days
to write, a few days to test,” Mauricio responded. “Let’s ask for five,” Fabio
summed it up, “Three to write, two to test.” Let’s ask for five, he explained,
so that we can then agree on four, if they insist. Finishing early is okay. Bet-
ter than asking for four days and then having to accept three. He asked if
Mauricio could start right away. Mauricio explained that he had an exam.
(It was about 5:30 p.m., and Mauricio was doing a college program at night.)
Okay, said Fabio, let’s start tomorrow.

As we walked back to the kitchen, I thought about asking Fabio if this
was something I could help with. I had been at Alta for a week at this point
and was finding it hard to understand the details of what people do without
being involved in a project. Fabio anticipated my question. “How much
memory does your laptop have?” he asked. “One gigabyte,” I said. “That’s
not enough to run eWeb,” he sighed. We agreed that I would help with the
user interface, since this could be done without running eWeb. We went
to Fabio’s desk and he showed me the application they were building, then
emailed me the URL and the password. I spent a few hours playing with
JavaScript for the new form. The next day, however, Fabio informed me
that the issue had turned out to be much more complicated, and in fact the
requirements for the project were being reconsidered altogether. Instead,
he said I could join him on another project that they were just starting: an
e-commerce web site for a different client.

Downtown Professionals 127

Early next week I was sitting next to Fabio at his desk, watching him
draw a diagram that represented the relationships among the “business
objects” of a client’s online store and was to serve as a blueprint for a data-
base. (At this point we had agreed that I would later help with the database
design.) As Fabio explained, they had done design “by hand” in the past,
but he now wanted to try doing it with a proper tool. I soon realized Fabio
was using not just a diagramming tool but a UML editor—a tool specifi-
cally designed for expressing relationships between software objects, which
could later be used to generate code and database design.

Fabio was working without too much haste, explaining to me along the
way what he was doing. He seemed to be coming up with the various prop-
erties of the objects without having to look them up anywhere or even
pausing to think. I watched as he created a box for “Product” and then
typed in the attributes that a “Product” was supposed to have. He then cre-
ated another box, labeling it “SKU”—the English abbreviation for “stock
keeping unit,” he explained. I thought about the “requirements document”
that Fabio had sent me the day before, realizing that it did not have nearly
enough detail about what the customer wanted. I asked Fabio how he knew
what “business objects” the store needed? Fabio laughed. Those are the same
for all stores! They had been working with online stores for quite some time,
he explained. This particular client did not even have anything specific in
mind. It had only a vague idea of what a web store would be like. All the
client had asked for, explained Fabio, was for Alta to build “an e-commerce
web site,” and that this web site would be no worse than its competitor’s,
plus a few extra things.

As I realized later, the request for “a few extra things” did not refer to
anything specific either—rather, the client just wanted its web site to have
something that its competitor’s site did not have, leaving it to Fabio to figure
out what that something could be. Fabio approached the task by looking at
the competitor’s site to see what it did and thinking what Alta would need
to do to allow for the same features and a little more. He then had a long
meeting with the client, explaining what his team could and could not
offer. For instance, they agreed that all products would be sold in predeter-
mined quantities: a customer who wanted to buy some queijo minas would
be able to choose between a 200g or a 300g package, but not anything in
between. In this way, Alta seemed not only to be providing global solutions
for the clients’ problems, but also helping clients adapt their practices to
the possibilities of global technology. Fabio continued adding boxes and
attributes as he spoke—the task seemed to consume little attention. At
one point he paused, to think about what to do with a particular property.

128 Chapter 5

“Let’s see what we did for Intermercado,” he said. He opened the source
code for Intermercado’s store, looked at it, then entered the same property
name into the new diagram.

Working the Web

I was trying to check my email when I realized that I had lost my network
connection. I first thought it was just me, but the growing murmur through-
out the room and the intensifying exchange of gazes confirmed that the
network was down for everyone. The murmur soon transformed into a long
collective Iiiiiiiii—a humorous interjection somewhat similar to the English
“oops,” which then gave way to laugher and jokes. It was indeed a bit of
an “oops” situation—a company predicated on using the newest software
technology could hardly proceed without an Internet connection.

It was soon announced that power to the whole office would need to be
turned on and off in order to restore the connection; everyone started shut-
ting down computers. People began moving around, talking, joking. Many
went to the common area, taking seats on the couch and in beanbags.
We chatted about random things. The system administrator had already
flipped the power switches and the Internet was back, but the people were
still talking. “The Internet is back up, you know,” said Felipe, the founder.
His tone sounded half-jokingly apologetic: he seemed to realize that acting
as an authority figure and calling on his employees to get back to work
would sound funny in the midst of this free-spirited moment that seemed
to spotlight Alta’s startup culture. Indeed, the comment just drew laughter.
Nobody hurried to get up.

I did not return to Alta next day, having scheduled some interviews
related to Lua. When I arrived the day after, Fabio told me he had a new
idea about what I could do. There was a new open source package called
“Spring Web Flow,” he explained, built on top of Spring, a Java framework
that seemed to be on everyone’s lips at the time. Fabio wanted me to try
using Spring Web Flow to implement a shopping cart. I asked him if he had
used it before. No, said Fabio. He hadn’t. He wanted someone to try it and
to build a proof of concept—a demo that showed that this was possible.
And he thought that I could take this task. I was flattered that I was getting
recruited into Alta’s research and development efforts, but soon realized
that Fabio likely picked the task because it was the most appropriate one
for an unreliable worker like me. The new task was something I could do at
my own pace. And if I were to give up on the task without completing it (as
I eventually did), this would not impact the schedules for Alta’s projects.

Downtown Professionals 129

I got back to my laptop to try to get started on Spring Web Flow. In the-
ory, this was easy: I just had to locate the framework on the web, download
and install it, then find some tutorials on how to build a simple applica-
tion. I was sure I would have no trouble finding documentation. After all, as
many of my interviewees often said, the Internet had become “the world’s
greatest library” where one could find anything.

I soon realized, however, that before I could get anywhere, I would need
to do a lot of basic setup. First I needed an appropriate web server, a piece
of software that would do the hard work of capturing the requests for web
pages coming from clients’ browsers and translate those requests into terms
that my application could understand more easily. I went back to Fabio, to
ask him what Alta’s developers used. “Use Jetty,” Fabio told me, explaining
that this was a new Java-compatible server that was much faster than the
alternatives. I went back to my seat, googled “Jetty,” and installed it follow-
ing instructions I found on the web. I then installed Eclipse, a Java develop-
ment tool I knew everyone at Alta was using. I realized that there had to be
a way of starting Jetty from Eclipse, so I returned to Fabio’s desk for further
instructions. He told me to install Jetty Launcher from inside Eclipse. See-
ing that I looked lost, another developer offered to show me. Here, he said,
traversing Eclipse menus: you install it, then you go here, you put your Jetty
Path here, then click here, then it runs.

I returned to my desk trying to reproduce what I saw. I did not get very
far: my Jetty Launcher and my Eclipse did not seem to like each other.
As I eventually understood, Jetty Launcher would not work with the most
recent version of Jetty. I returned to Fabio several times with questions. At
one point, another developer, “Leonardo,” jumped in. Yes, he said, Jetty
Launcher requires Jetty 5 and would not work with Jetty 6. I told him I saw
a discussion of this on the web and that someone has offered a patch: a set
of changes to Jetty Launcher that made it compatible with Jetty 6. I was
hoping that Leonardo would tell me whether this method worked, but his
response was disappointing. He had read about the patch but had not tried
it; he was still using Jetty 5. He encouraged me to keep trying with Jetty 6,
however, and to tell him if I managed to get it working. Someone had to be
the first to use it, so it might as well be me.

I went back to my desk, spending more time reading documentation and
forum posts, eventually deciding to give up on the latest version and go
with Jetty 5, the same version everyone else was using. I could finally start
Jetty from Eclipse, but I now needed to build an application. I tried sam-
ple applications from Jetty, Spring, and other projects, but none worked.
There were too many moving parts and it was impossible to tell which was

130 Chapter 5

causing problems. As I headed out for the day, I stopped by Fabio’s desk to
discuss the matter briefly. Leonardo overheard us again. “Use struts-blank,”
he said. I was not quite sure what “struts-blank” was, but I figured a Google
query would give me the answer.

I resumed my task the next morning. As I learned, “struts-blank” was a
trivial application that would work on top of Struts, another Java frame-
work. Using struts-blank resolved a round of problems, but introduced me
to the next set. I spent more time reading what I could find on the web and
approaching the issue from different angles. I was finding lots of relevant
documents, though few were helpful. Spring documentation assumed a lot
of knowledge that I did not have. Jetty had documentation for version 6, but
not for version 5. Jetty Launcher was missing documentation all together. I
returned to Fabio with questions several times, at one point asking him if he
or anyone else at Alta had actually ever gotten all of those pieces working
together. “No,” he responded. “The whole point is to get it working.”

As this episode illustrates, software work requires a peculiar fusion of
globalized and localized activities. Much of that work involves interac-
tion with software developed quite far away and documented in bits and
pieces around the Internet. The software and the documentation are quite
mobile. In theory, anyone with an Internet connection can download and
use them. Downloading software never used before in the local context
and getting it to work by following documentation on the Internet is part
and parcel of software development. In my case, getting the components
to work together was “the whole point,” as Fabio pointed out. Fabio had
heard of Spring Web Flow, likely by talking to other developers or by read-
ing technology news. The system sounded promising, and could perhaps
become important for Alta’s future claims to be using the world’s newest
software technologies. Fabio did not at that point know what exactly it
would take to actually make Spring Web Flow work. That was the task he
was assigning to me.

A software developer who cannot use the Internet to find out how to
solve a problem that is new to his colleagues is of little use to a company
like Alta. A good developer would also be careful to not always pester col-
leagues with questions that can be answered with a web search even for
things that the colleagues likely do know about. (My position in the com-
pany seemed to allow me to get away with a lot more questions than other
developers could afford to ask.) On the other hand, in practice, the task of
getting downloaded software to work benefits dramatically from proxim-
ity to people who have worked with it before. A single phrase uttered by
a colleague can substitute for hours of Internet search and trial and error,

Downtown Professionals 131

stressed many of my interviewees. Software development consequently
becomes an intensely local affair. Developers often seek balance between
local and remote knowledge through an active exchange of what they call
“pointers”—links and keywords that can be used to locate additional infor-
mation online. Like Giddensian “symbolic tokens” (Giddens 1991) pointers
become a tool of globalization, providing cross-references between the con-
crete local reality and the abstract world of online software and documen-
tation. My quest started with one such pointer—the short phrase “Spring
Web Flow,” which led me to abundant (if somewhat unhelpful) documen-
tation. My progress was later furthered by additional pointers I picked up
along the way, such as Fabio’s suggestion to use “Jetty” and Leonardo’s
suggestion to try “struts-blank.”

The power of local advice and Internet documents both have much
to do with the shared context of work. A few hours later, everything was
almost working. I returned to Fabio and asked him what version of Java he
was using. “I just do ‘sudo aptitude install java,’” said Fabio. I returned to
my laptop, and typed the four words at the Linux command prompt. A few
seconds later I had the right version of Java. My simple project was finally
running (though this was only a small step in the task that Fabio gave
me). Fabio’s four words “sudo aptitude install java” magically brought my
laptop in sync with all of Alta’s computers, making sure that the steps that
had worked for Fabio and Leonardo would work for me as well. This syn-
chronization was possible, however, because Alta’s machines, configured in
Brazil, and my laptop, configured in San Francisco, were already running
essentially the same software, Ubuntu Linux 6.10. Continuing synchroni-
zation of practice was much simplified by the extent to which the context
had been synchronized through earlier work, a long process the beginning
of which I described in chapter 4.

A Local Affair

Around 6:00 p.m., Eduardo started gathering people. They would be having
a cake, he explained to me. It was a company tradition: once a month they
got a cake and congratulated all the people who had birthdays that month.
This time it was just Leonardo, a recent PUC graduate who had been tran-
sitioning to management and was the most recent minority partner. Every-
one gathered in the conference room. There were two trays of snacks, a
cake, and several large bottles of Coke. Eduardo suggested that we should
do introductions for new people. The first of the new people mentioned
that he lived in Niteroi—a city across the bay from Rio, from where a large

132 Chapter 5

number of Alta’s employees commuted. After that each of the new people
was asked to say whether they thought Niteroi was a better city than Rio.
When my turn came, I introduced myself but dodged the Rio–Niteroi ques-
tion. “And what about Niteroi?” several people demanded. I gave a vague
response, hinting at a preference for Rio. Fabio, a native of Niteroi, aimed
a bottle cap at me. Amid loud demands for me to take a clear stand on this
important issue, I ended my introduction even more vaguely, unwilling to
step on the neighborhood sensibilities of Alta’s global IT professionals, skip-
ping the opportunity to act as a foreign judge of this local rivalry. “Vase-
line,” snickered Fabio as he put down the bottle cap.

Leonardo started cutting the cake. “Who are you going to give the first
piece to?” asked several people. There was some suspense. “I will give the
first two pieces at the same time,” said Leonardo. He cut two pieces. “Those
are for my team,” he said, giving them to the two developers who worked
under his supervision. He then cut a piece for Eduardo, who was slouch-
ing in a chair, looking over the team like a patriarch. He owed everything
to Eduardo, explained Leonardo, exaggerating the tone and making a bit
of joke out of his public acceptance of Eduardo’s authority. The next piece
went to Felipe, another cofounder. Luís, the third of the original partners,
was not there, so there was again suspense as to who would be getting the
next piece. It went to Fabio. The move caused a murmur. Eduardo and
Felipe were unambiguously the bosses of the company. Fabio and Leon-
ardo, on the other hand, were both recent minority partners. Leonardo’s
move thus appeared to acknowledge Fabio’s status, while also highlight-
ing the difference between minority partners and everyone else. Leonardo
laughed as he gave Fabio his piece, then put down the knife: others could
cut their own pieces. Startup spirit aside, Alta did have founders, minority
partners, and general employees. Fabio and Leonardo had to learn to man-
age their new status vis-à-vis others.

During one of my last weeks in Rio in 2007, I met with Rodrigo Miranda
at a café in Copacabana. He had agreed to provide his comments on a paper
I was going to present at a conference upon my return to the United States.
One of the things he mentioned concerned my discussion of how developer
build ties to the remote centers of software practice. Rodrigo suggested that
“build ties” was perhaps too strong a phrase. Most people adopted foreign
technology and got quite good at it, explained Rodrigo. But this had little
to do with building actual social ties to foreign communities, he continued.
He had been trying to do it with Kepler and finding it extremely difficult.
Most people never tried. Look at Alta, he said. They adopted the culture,
but without the social ties. Their clients are and may always be local.

Downtown Professionals 133

Rodrigo was right to some extent. Alta was an intensely local affair. The
company used foreign technology and lot of foreign culture, without much
direct contact with the foreign centers. In contrast to Kepler and Fabio’s
Lua projects, carried out on the side for “fun,” Alta’s main line of work
was local, both in its location (involving little interaction with people out-
side Brazil) and in its significance. Such local work was often boring and
brought the developers limited cultural dividends in the larger world of
software practice. In many ways it came down to sales engineering: doing
what had to be done locally to allow a Brazilian company like Intermercado
to use the software supplied by EIT.

The local focus of Alta’s work, however, was also a source of strength. In
addition to making a profit, Alta was building IT solutions that were actu-
ally being used by many people. After my departure in 2007, the company
proceeded to strengthen its relationship with Intermercado, eventually
winning the bid to write software that would control the front page of one
the most popular online stores in Brazil. The months that followed were a
period of much work and much learning, Fabio told me when I returned in
2008. He and other Alta engineers had to learn to build a web application
that could handle traffic never faced by any of their earlier applications—
or, quite possibly, by any software based on Kepler, I can add. Another local
contractor of Intermercado, required by Intermercado to work together
with Fabio’s team, was instrumental in this learning. Local focus was bring-
ing Alta to projects whose scale made them exciting and a great source of
war stories. In the same months, Fabio finally stopped participating in Lua-
related projects. There just was no time for such games.

6 Porting Lua

In 1993 a group of computer scientists working at a university in Rio de
Janeiro developed a simple programming language called “Lua” to serve the
needs of a Brazilian company based in the same city. Nineteen years later,
Lua is often ranked among twenty of the world’s most popular program-
ming languages1 (out of thousands) and has a user community spanning
five continents. While Lua has brought its authors rather modest finan-
cial rewards (it is distributed for free and brings little consulting revenue),
its use in popular software such as Adobe Lightroom, World of Warcraft,
and, more recently, Angry Birds, has made it in some ways one of the most
successful software products ever developed in Latin America. Lua’s story
provides us with a rather different picture of peripheral participation in a
global world of practice than the case of Alta that I discussed in chapter 5.
This picture is also a lot less intuitive and more complex. I therefore look at
Lua extensively in two chapters: this one and the one that follows.

One of the things that makes Lua’s story unintuitive is the fact that the
language is little used in Brazil. In 2007, when I was doing my fieldwork,
few Rio programmers had heard of it. The situation has changed only some-
what since—Lua is now better known, but still rarely used. This isolation
from the local context, however, is the flip side of Lua’s success. American
users of Lua often credit it with being highly portable—Lua can run on many
different computing platforms. While increased portability in this narrow
technical sense is an important part of Lua’s story, I focus here on a different
kind of “portability”: Lua’s gradual transformation from a highly local proj-
ect to an international programming language that betrays little connec-
tion to the city where it was developed and where it is still based. I organize
my discussion around Giddens’s (1991) notion of “disembedding”—the
“lifting out” of social (or in our case socio-technical) relations from their
local context, which then makes them mobile across time and space. Fol-
lowing Lua’s transition from a highly embedded project—developed as a

136 Chapter 6

solution for a specific set of problems, entangled in a web of local rela-
tions, goals, and commitments, and reliant on “tacit knowledge” (Polanyi
1966; MacKenzie and Spinardi 1995)—to an international programming
language, we observe the different mechanisms that enabled and facilitated
this disembedding.

As we will see, Lua’s disembedding and its later international success
were not planned in advance. To a large extent the disembedding of Lua
simply “happened,” in many ways without a conscious intention by its
authors. It happened in part due to numerous decisions that most par-
ticipants saw as quite natural. In some of the cases, acting otherwise—for
example, using Portuguese words as Lua’s keywords—would be nothing
short of silly according to some of my interviewees. It is important, how-
ever, to look closely at such “obvious” decisions. It is by understanding
how such decisions come to be obvious, and why they are obvious to some
and not others, that we can come to see the geographic logic woven into
the professional culture of software development.

The story of disembedding told in this chapter complements the investi-
gation of local reassembly of a foreign practice presented in chapters 4 and
5. After decades of work that helped establish the foundation of software
practice in Brazil, the context was created that made it possible for some
of the practitioners to engage in one of the most central roles in the world
of software: developing a new programming language. This replicated con-
text, however, is characterized by a distinct pattern of connections that
makes it different from the remote original in many ways. Brazilian aca-
demic computer science has strong connections to foreign computer sci-
ence, which proved an important factor in Lua’s success. At the same time,
much unlike the American computer science research community, which
is famous for tight linkages with industry, Brazilian academic computer
science is relatively isolated from both local and foreign computer industry
and instead exists in somewhat of an enclave. This makes the experience of
Lua’s authors quite different from that of their students working for com-
panies like Alta, whose success depends in many ways on tight integration
with local systems of production.

I start this chapter with a look at my interviews with Lua’s users in Cali-
fornia in 2007. I then return to Lua’s history from the early 1990s, proceed-
ing to around 2003, a point at which Lua could be said to have achieved
its fullest disembedding and was starting to become a major success. In the
next chapter, I then turn to the limitations of this process of disembedding,
looking at Lua’s changing relationship with the university, city, and coun-
try where it was born.

Porting Lua 137

Choosing Lua

“Craig,” one of the people who responded to my request for interviews sent
to the Lua mailing list in early 2007, was an engineer at a small startup in
California. Like most other users of Lua whom I interviewed in California,
Craig encountered Lua online, while searching for a scripting language to
embed in the software application he was working on, an online computer
game. None of the people he knew personally at that point had heard of
Lua before. Craig mentioned Lua’s small size and simplicity as the reasons
for choosing it over a “more mature” language such as Python. He was
particularly concerned with the security of his application and felt that a
smaller and simpler language, one that he could understand more thor-
oughly, would help. Craig noted an important weakness of Lua—the rela-
tive scarcity of libraries, a hurdle faced by all new languages. This factor,
however, was of little relevance to him. “We were not building an applica-
tion [in Lua], like a web server or something else that would need a whole
bunch of specialized libraries,” he said. They just needed a way to add
scripting to an application they already had, written in C++.

Craig’s use of Lua was quite typical: most Lua users in the United States
employ Lua for “scripting” applications written in C, a programming lan-
guage developed in the early 1970s, which came to dominate software
development by the early 1990s. Over the last decade and a half, however,
many developers have moved to newer languages such as Java, Python, or
more recently Ruby. Those newer languages use a technology that relies on
what is called a “virtual machine” (or VM)—a software layer that provides
a degree of isolation between the programmer’s code and the machine’s
hardware. This isolation makes it possible to develop software much more
quickly, though at a price: the resulting software runs more slowly. Conse-
quently, C and its close relative C++ remain popular, especially for the kind
of software where speed is important.2

In theory, most of the new VM-based languages can be combined with
C in a single application, potentially allowing the developer to get the best
of both worlds. In such a hybrid design, some parts of the system would be
written in C, while other parts would be “scripted” in some language that
allows for easier development. (The words “scripting” and “programming”
mostly mean the same thing, except that scripting usually suggests easier
work that does not delve as deeply into the innards of the machine.) Such
usage is often complicated and is frequently frowned upon. For example,
Sun Microsystems had pursued a targeted campaign to eradicate such mixed
applications involving Java, encouraging the programmers to write their

138 Chapter 6

code in “100 percent pure Java.” Lua, on the other hand, generally presents
itself as the language primarily designed to be used together with C.

Lua has become particularly popular in the development of computer
games, where efficient use of computer hardware is often crucial and the
developers frequently work closely with C modules for handling graphics.
Lua allows such developers to use “easy” Lua for parts of the code that are
likely to change often, while relying on the more efficient C for tasks that
are most likely to put strain on a computer’s resources. Lua thus thrives in
a relatively small niche, where it has positioned itself as a complement to
a well-accepted technology, offering certain unique features that shield it
from devastating competition with the “more mature” languages such as
Python. Developers like Craig note and appreciate Lua’s suitability for com-
puter game development.

Like other interviewees, Craig found it quite easy to get started with Lua.
My question about how he learned to use Lua and what kind of resources he
used took him by surprise. “I am sure I downloaded everything, ran the com-
mand line, found out how that works,” he said after a pause. Another inter-
viewee “Steve,” a lead engineer for a team of software developers working for
a large software company in California, reported similar ease, which he then
contrasted with JavaScript, a programming language developed by Netscape
that my interviewees often considered an alternative to Lua. He did not need
to look for people who understood Lua, Steve told me. Had he decided to use
JavaScript instead, Steve would have gone and talked to people in his com-
pany who had a JavaScript implementation. “But that’s because JavaScript is
messy,” he explained. “The great thing about Lua is that you don’t need any
of that.” Lua’s elegant simplicity made its foreign origin irrelevant—Steve
and Craig could use Lua even if nobody else in California did so.

Like Steve, Craig did not feel constrained by his lack of contact with
other Lua users. Just as he was starting to work with Lua in the summer of
2005, however, a Lua workshop was organized at the Adobe office in San
Jose, about twenty miles south of where Craig’s startup is located. (Adobe
itself was extensively using Lua in one of its projects—Adobe Photoshop
Lightroom—which was released two years later.) The event included pre-
sentations by two of Lua’s authors, and Craig attended a part of it. “My
reason to go was to get some sense of how serious this is,” he explained.
“To ask a few questions. To talk with some people about it.” Seeing live
users of Lua helped Craig feel more confident about his choice. He was
not, however, looking to build ties with those people, he explained. At
least as far as any technical questions regarding Lua were concerned, Lua’s
documentation and online community provided Craig with all he needed.

Porting Lua 139

A Global Perspective

All American users of Lua I talked to said that Lua’s Brazilian origin was
nearly irrelevant to them. “I take a global perspective on those things,” said
“Rich,” a software contractor who used Lua in his projects whenever he
had a chance. Taking a global perspective on Lua luckily took little effort.
While none of my California interviewees could read Portuguese, this pre-
sented no problem when it came to using a language developed in Brazil,
since the Lua community interacted in English. “I guess English language is
the lingua franca for Lua as well, from what I can tell,” explained Craig. “I
haven’t seen any Brazilian, or Portuguese, emails coming up.” Therefore, he
explained, he had never had any concerns about being able to access help
or documentation.

Emails in Portuguese do occasionally arrive through the Lua mailing
list, and are typically treated politely, usually receiving a reply in English
(sometimes quoting the original question run through an online translator)
and occasionally even in Portuguese. Displaying a global perspective simply
requires treating such infrequent occurrences with humor. The discussion
on the Lua list shows that some of the list members have a certain curiosity
about Lua’s unusual origin and sometimes allow themselves friendly ques-
tions about Brazilian practices that they find surprising—for example, the
frequent use of a pair of brackets to close email messages (as a shorthand
for “hugs”). Those who want to, however, can simply ignore such cultural
differences. Most of the translation work is already done by the Brazilian
members of the list.

Perhaps the only way that Lua’s foreign base factored into Craig’s deci-
sion making was because of the increased difficulty of understanding how
“academic” Lua was. Craig knew that Lua was produced by university
researchers and was worried that it was “an academic exercise.” Making this
evaluation would have been somewhat easier in the case of an American
university—for example, nearby Stanford—Craig explained, since he could
meet the authors or would perhaps “know somebody who knows some-
body who knows them.” In that sense, Lua was more “opaque.” However,
Craig ultimately found other ways to understand the intentions of Lua’s
authors: reading about the language, using it, later attending the workshop,
and, perhaps most important, learning that Lua had been used in World of
Warcraft, one of the most successful computer games at the time.

Other interviewees similarly expressed the desire to understand the peo-
ple behind Lua as a way of learning where the language may be going in
future, and some noted that not being able to see the authors (at least on

140 Chapter 6

video) made it harder to make this judgment. For many, however, Roberto
Ierusalimschy’s book provided enough answers:

Rich: Like Perl, the book was written by the architect of the language.
Programming in Perl is written by Larry Wall. And the Lua book was written
by Roberto. So, by reading the book you get the sense of both the designer’s
personality and the language itself. And so just reading the book it was
pretty clear that the guy who made this language was a really smart guy,
and he valued principles that I valued: simplicity, elegance. And at that
point it doesn’t really matter where he lives or what nationality he is. He is
just a smart guy who made a good language, that’s all that matters to me.
If he wasn’t able to speak English, it probably would have been a problem.
But obviously there wasn’t any communication barrier. So the fact that it
was made in Brazil wasn’t anything to me.

Lua authors’ ability to successfully communicate (in English) their commit-
ment to the principles that potential users shared made Lua’s geographic
origin irrelevant as far as most foreign users were concerned.

American users of Lua also found that they could understand Lua by
placing it in the larger genealogy of programming languages, most of which
were developed either in the United States or with the strong involve-
ment of American computer scientists. Steve, for example, described Lua
as “Lisp-like,” linking it to a venerable programming language developed
at MIT in the 1960s. Other developers described Lua by producing a list of
its features. “Suffice it to say,” said one 2007 article on Lua, “that Lua is
an elegant, easy-to-learn language with a mostly procedural syntax, featur-
ing automatic memory management, full lexical scoping, closures, itera-
tors, coroutines, proper tail calls, and extremely practical data-handling
using associative arrays” (Hirschi 2007). Such a description again helps
make Lua’s geographic origin irrelevant by placing the language firmly
within a classification system developed primarily by American computer
scientists.

The classification system that makes it possible to describe Lua using a
list of eight concepts, as Hirschi does in the passage quoted previously, and
the larger system of meaning to which it is linked provide an important dis-
embedding mechanism. A programming language that is designed in such
a way that it can be explained in terms of this shared system is relatively
free to travel. Such academic sophistication is not expected of all program-
ming languages—some of them are notorious for being “messy” and “ugly”
and become widespread primarily through a strong association with a pow-
erful actor. For Lua, however, its academic credentials were crucial.

Porting Lua 141

Users of Lua often also point to another important disembedding mech-
anism: Lua’s internationalized credentials typically expressed in the form
“Lua is used by X,” where X would be a major company, or “Y was written
in Lua,” where Y would be a well-known product. Sometimes, developers
cite such credentials as being important for their own decision to go with
Lua. Others draw on such credentials to convince their colleagues. Steve,
for example, told me that his choice of Lua of course attracted questions
within the company. “What is this? Where does this come from?” asked his
colleagues. Steve explained that Microsoft had shipped products with Lua.

“Used by Microsoft” can be understood as an instance of what Giddens
(1991) calls “symbolic tokens.” Symbolic tokens represent known units
of value recognized across space and act as an important disembedding
mechanism, by removing the need for situated trust. “Used by Microsoft”
deflects the original question about Lua’s origin (“Where does this come
from?”) and whether its authors can be trusted. If major companies use Lua,
where it comes from and who wrote it are a lot less important.

Legacy Stuff

Over its history, Lua has undergone some substantial modifications, often
making old code incompatible with the newer versions of Lua. Craig
remembered this issue being discussed at the workshop he attended. “Dur-
ing the meeting a lot of people were worrying about legacy stuff,” he said.
As a new user, however, he had little interest in the topic. “And in my case,
I was just like: ‘Oh, I don’t care, please break compatibility, make it good
for me!’” he explained.

Existence of old code (“legacy stuff”) creates a serious problem in software
development. When programming languages and software libraries are put
to use, their limitations eventually become clear. While those limitations
can often be overcome with additional code, such incremental additions
lead to increasingly “ugly” and “ad hoc” design. The authors face the temp-
tation of rethinking their design and “cleaning it up.” To be truly effective,
such “cleaning up” often requires radical changes, which would make the
new version incompatible with code written earlier. Changing old code
to work with the new version of the programming language or a library
often requires a lot of work and introduces a new opportunity for bugs. It
is therefore not taken lightly. Avoiding the need for such changes is called
“backward compatibility.” The need for backward compatibility typically
impedes the evolution of a language or a library and leads to an increase in
the size of the code (“bloat”) and unnecessary complexity (“cruft”).

142 Chapter 6

While other Lua users in California expressed somewhat more interest
in backward compatibility than Craig, most considered Lua’s willingness to
break with the past to be a major source of strength, comparing Lua explic-
itly with JavaScript, a language embedded in most modern web browsers.
Lua devotees sometimes described JavaScript as “nasty,” comparing it to
Lua’s “elegance.” Some pointed out, however, that this “nastiness” was
very much connected with JavaScript’s widespread adoption:

Rich: JavaScript suffered from premature standardization. There is this
web browser, the web blew up, so everybody is using JavaScript. And then
they thought: “Oh, we have to standardize this, make it interoperable.”
And the language hadn’t really stabilized at that point. And so there is
a lot of cruft and nasty things. Both in JavaScript, that is the language
itself, such as the “with” operator, and especially in the object libraries.
[. . .] Because it was standardized so early, because it had a huge community.
Whereas Lua didn’t really have those forces. It had a small community and
less momentum. So the designers could, when they realized they made a
mistake, throw it out, unify the concepts under a different way of thinking.
The different abstractions that went from Lua 3 to 4 to 5. So, JavaScript
could have been as good a language as Lua, I think, if it hadn’t had this
pressure on it, by the huge community, a huge user base.

For Rich, Lua was simple and elegant because it was not weighed down by
commitments to any existing body of code. Not having such commitments
was, however, a choice that Lua’s designers had made, as they broke com-
patibility with Lua’s original applications. Comparing Lua and JavaScript,
we should consider that while popular web browsers had prevented Java-
Script from achieving Lua’s elegance, it was those same browsers that made
JavaScript relevant. Cutting the links with those browsers would under-
mine JavaScript’s popularity. Lua’s early commitments, on the other hand,
were to custom software written for a company located in Rio de Janeiro.
Most users of Lua agree that leaving such a “legacy” behind was crucial for
Lua’s international success. As we will see, some users in Rio de Janeiro had
to bear the cost.

DEL, SOL, LUA

If we went back in time to the early 1990s, when the first version of Lua was
created, we would find a highly embedded project, one tied to local goals,
relationships, and commitments. Had Craig tried to use an early version of
Lua, he would have likely found it a daunting task. He would have faced a

Porting Lua 143

piece of code written for a specific purpose (quite unlike his), offering him
little in terms of social support and no justification if his choice of the lan-
guage were questioned. At the same time, as we will see, from the earliest
days of Lua, the authors had made a number of choices that allowed for
future disembedding.

In 1992, Roberto Ierusalimschy, a native Carioca, returned to Rio de
Janeiro from a one-year postdoc at the University of Waterloo, in Canada,
and started working as an assistant professor at PUC-Rio’s Department of
Informatics, where he had completed his PhD two years earlier. In addi-
tion to his job as a professor and his academic research in programming
languages (working on an experimental language that “completely failed,”
according to him), Roberto started doing consulting work at a PUC-based
consulting venture called Tecgraf.3 In the early 1990s, Tecgraf was a fairly
small group of PUC students and professors offering IT consulting services
to a number of organizations, including Petrobras, Brazil’s main oil com-
pany and one the country’s largest corporations. Petrobras was an unusual
client—a semi-public company responsible for reducing Brazil’s depen-
dence on foreign oil by developing the capacity to extract deep-sea oil off
the coast of Brazil (and especially in the areas surrounding Rio de Janeiro).
Petrobras thus faced substantial technological challenges and was an impor-
tant consumer of scientific expertise.

Also at Tecgraf was Luiz Henrique de Figueiredo who had also just
recently received his PhD in Rio de Janeiro at the Institute for Pure and
Applied Mathematics (IMPA) and was employed full-time by Tecgraf.
Also a native of Rio and a graduate of PUC-Rio, Luiz Henrique had earlier
spent three years pursuing a PhD in England and another year working
at the University of Waterloo. Luiz Henrique was trained as a mathemati-
cian, thus benefiting from a different and considerably longer history of
efforts to transplant a scientific practice into Brazil. From his early days
as an undergraduate at PUC, however, Luiz Henrique had been interested
in computing. After returning from England, Luiz Henrique later spent a
year in Canada, working at the University of Waterloo’s Computer Systems
Group. He focused his doctoral research on computer graphics, while work-
ing as a software developer at Tecgraf.

In 1992, Luiz Henrique turned to the problem of providing a unified way
of configuring graphic interfaces for a large number of software applica-
tions that Petrobras used for simulations related to oil extraction. “These
were huge programs that were very old and very refined, and they didn’t
want to give them up,” said Luiz Henrique, “But at the same time, because
they were very old, the interface was very clunky.” Tecgraf was asked to

144 Chapter 6

provide a better interface for this old simulation software, something that
would allow the users to simply click on a diagram, enter a value, and
request a simulation. Realizing that Tecgraf would need to provide such an
interface for a wide number of simulators, Luiz Henrique started thinking
about developing a language for expressing the configurations. “This was
kind of a typical problem,” he explained to me. “You would write a simple
text file that would say: I want this diagram and in this diagram when I
click this entity you should show this kind of a menu and do this kind of
data validation, things like that. And then when I am done I want this data
to be output in this format.” The language was developed in 1992 and was
called “DEL,” short for data-entry language. It was what would today be
known as “a domain-specific language”—that is, a language intended for a
highly specific purpose, in this case configuring oil extraction simulations.

While DEL was a success in Tecgraf and among its users in Petrobras, it
soon became clear that it was too limited to build all the applications that
Petrobras wanted. In mid-1993 Luiz Henrique met with Roberto and Walde-
mar Celes, then a PhD student at PUC, who had themselves developed
another domain-specific language called SOL (Simple Object Language) for
another of Petrobras’s many specific problems, which had also been found
too limited. The outcome of the meeting was a decision to replace both DEL
and SOL with a new language, which was soon implemented by Waldemar
as a course project. The new language was called LUA, meaning “moon”
in Portuguese—a pun on SOL (Portuguese for “sun”), but also, as some-
what of a joke, an abbreviation for Portuguese “Linguagem para Usuarios de
Aplicação”—“Language for Application Users.” LUA was a success and was
quickly picked up by other projects at Tecgraf.

Comments in English

DEL, SOL, and LUA (soon renamed “Lua”) were all written in the C pro-
gramming language, which was at the time and still is the lingua franca
of programming languages. Similarly, from early on, Lua displayed a com-
mitment to another lingua franca: English. Lua uses English keywords as
its basic vocabulary. Its code is also written in English, which includes the
names of variables as well as the comments.4 Lua’s documentation is also
provided primarily in English.

Lua’s authors had somewhat different memories of the decision process
that led to their choice of English over Portuguese. As described in chap-
ter 2, Roberto recalled a discussion that weighed pros and cons, with the
eventual choice being driven by the practicality of diacritic-free English, a

Porting Lua 145

preference for “standard” keywords, and the desire for consistency when it
came to comments and error messages (i.e., those were in English to match
the English keywords). Luiz Henrique, by contrast, did not remember the
topic ever being the subject of discussion, seeing use of English as the only
sensible option. “No one would take Lua seriously if it had Portuguese key-
words,” he explained.

To get a better understanding of the logic that might have led to the
choice of English, I have also talked about this with some of Lua’s early
users. One of them, a Tecgraf developer who worked with Lua “when it
was still called SOL,” first told me Lua-like use of English has always been a
standard practice at Tecgraf. He then corrected himself, however:

Antônio: No, sorry, the comments are in Portuguese . . . obviously, right?
But variable names, we usually try to do all in English. But our comments
are in Portuguese. Lua is different.

As Antônio then explained, using Portuguese for comments would be
undesirable, as it would potentially show the limitations of developers’
English skills. “We don’t even want people here to try to write comments
in English, because most of them are not fluent in English, so it would end
up being broken English,” he said. Unlike code, which uses English in a
constrained way, with heavy reliance on abbreviations (e.g., “cal” or “apl_
unsel_group”), comments are written in full sentences. They consequently
offer little opportunity to hide any weaknesses in a programmer’s English.
Using English for variable names and providing comments in Portuguese
provides a sensible (and very common) compromise. (Antônio’s explana-
tion of why the code itself should be in English were similar to those dis-
cussed in chapter 2.)

Lua was different. The first distinction, not stated but implied in
Antônio’s analysis, involved the developers’ proficiency in English. Unlike
the Tecgraf programmers who, Antônio feared, might write comments in
broken English, Luiz Henrique and Roberto were both comfortable with
English, as well with the English-speaking academic culture more broadly,
having spent some time abroad. Lua’s authors could thus write their com-
ments in English without the risk of embarrassing themselves with simple
mistakes. This competence (and confidence) with English gave Lua an addi-
tional early start on disembedding.

The second distinction concerned Lua’s need for mobility.

Antônio: In Lua’s case I think it even makes sense for everything to be in
English. It was born to fly, for other. . . It has a much more globalized use
than our applications.

146 Chapter 6

He contrasted this to Tecgraf’s other software:

Antônio: Our products are not . . . Our source code is not for export, it’s
not open. What we do is not open. The code we write is for Petrobras and is
their property, and they don’t want to have to also . . . to know English to
read our code. So, for several reasons, in applications we don’t write com-
ments in English. Variable names—yes, in the code. You read it more or less
in English. But comments . . .

Unlike other applications, Lua was “born to fly,” as Antônio saw it. Con-
sequently, he did not remember anyone ever finding its use of English
strange.

When I pointed out to Antônio that Lua was originally clearly not meant
to “fly,” but was ostensibly written to solve a specific problem faced by Tec-
graf, he offered a different explanation of the Lua team’s possible rationale
by referring to his own project, which he saw as potentially open.

Antônio: Yes, nobody could think about . . . the explosion, the success
that Lua would have. The acceptance in the games [says in English] in-
dustry. But maybe they, Roberto and Luiz Henrique, had this idea, I don’t
know. For example, this [hobby project] that I wrote, that’s all in English.
Comments are in English. Because in my case I was thinking, I don’t know:
one day I’ll put it on LuaForge, someone will want to download it. I like
this idea of open source [says in English], of many eyes [says in English].5

Everyone will be looking. I think that when you do an open source applica-
tion, you have to speak the most widespread language, the most common
language, most easily understood. But not for our applications . . . Not at
Tecgraf. We actually don’t want this to happen.

While Antônio said that he never wrote comments in English when work-
ing on Tecgraf products, he used English comments in his hobby project.
He made it clear that he neither expected this project to become anything
big, and in fact he had not even gotten around to releasing the code to
anyone. “One day,” however, he could put it on LuaForge, a web site where
users of Lua share code. And who knew, perhaps it would become popular.
Using English kept open this possibility.

Antônio’s project and Lua were both different from the products that
Tecgraf built for Petrobras by their relative isolation from the local power
relations. Neither was written to immediately become property of a com-
pany. While both projects perhaps technically belonged to PUC, as an aca-
demic institution PUC seemed content to let the developers treat their code
as free. (See the next chapter, though, on the question of PUC’s owner-
ship of Lua.) In addition to simply giving them the freedom to write such

Porting Lua 147

projects the way they wanted to write them, this made the possibility of a
global success somewhat more imaginable, since the projects’ destinies were
not as obviously in the hands of the bureaucracy of a Brazilian corporation

To understand Lua’s early use of English, we must thus consider the
potentiality of Lua’s later success, the inherent ambivalence of such projects,
and the notion of “subvocal imagination” that I mentioned in chapter 1.
Created for specific needs (often the needs of those who pay the bills), proj-
ects such as Lua may from the beginning carry the imaginable possibility
of global success. While such a global future is rarely planned for explicitly,
it can be imagined, and this may be sufficient reason for developing the
project in a way that would not altogether preclude the possibility of a
global success. (I return to this topic in chapter 8.) This means, among other
things, writing comments in English.

When explaining his rationale for writing his hobby project in English,
Antônio drew explicitly on open source terminology. Today, the open source
paradigm provides developers with a ready vocabulary and an accepted
framework for explaining such decisions. While Lua eventually became
“free software,” it did not start this way nor does it appear that the free
software / open source vocabulary was available to Lua’s authors in 1993. I
look at Lua’s transformation into a free software project in the next section
and come back to this issue in the next chapter.

Let’s See What Happens

Lua’s authors stressed in our interviews that the language was developed
to solve specific problems Tecgraf faced in its work for Petrobras, and that
Lua’s later international success came as a major surprise to them. When
I asked whether his personal goals for Lua had changed over time, he
responded as follows:

Roberto: Completely, completely. Completely! This is so huge, I can’t
 . . . It changes everything. When we started Lua . . . This is one of the
things that people do not . . . When we say in our paper, that paper about
the history of Lua,6 that it went beyond our most optimistic expectations,
this is not very true. Because we didn’t have any expectations. [. . .] We re-
ally created a language to solve this specific problem we had at the time.
That’s why we joke, but it’s true: There was no “Lua 1.0.”7 There was “Lua.”
We did code, and that worked and “oh great, it solved our problems here.”

Lua represented a specific solution for a specific problem, and Lua’s authors
did not attempt to innovate for the sake of innovating. Lua offered a

148 Chapter 6

pragmatic combination of features, informed by academic research on pro-
gramming language design, but not aiming to contribute to it.8

The pressure to publish, however, combined with Lua’s early success at
Tecgraf, soon led the authors to showcase the language outside Tecgraf,9

starting with a short presentation at a conference in Brazil in 1993. “We
are academics,” explained Roberto. So, when they heard of a conference
where they could present their work on Lua, it seemed like a natural deci-
sion, especially since the conference had an event that aimed to include
“real” applications, and Lua, which at the time was used by eight to ten
real people at Petrobras, was exceptionally “real” by the standards of aca-
demic research. According to Roberto, the presentation was extremely well
received.

While Lua was not written to advance computer science research, the
authors’ academic backgrounds helped them explain Lua in terms of cur-
rent computer science research, making it possible for Lua to travel away
from Rio using a set of academic papers as a vehicle. A few years later the
same ability to explain Lua in proper terms became important in giving
Lua credibility in the eyes of American software developers working outside
academia.

In 1994, the team wrote a longer paper for another Brazilian conference.
This time, the paper was written in English and referred to the language as
“Lua” rather than “LUA,”10 avoiding the hassle of explaining a Portuguese
acronym in an English paper. The paper also included a link to download
Lua (“Lua 1.1”). A colleague at Tecgraf “pushed” them to put Lua up on
a web site and to include a link in the paper “to show that this wasn’t
just vaporware,” Roberto explained. (“Vaporware” is a developers’ term for
software that is described but does not actually exist or does not work as
described.) Encouraged by Lua’s success so far, the team was also curious to
see what might happen next, and Luiz Henrique announced Lua on a num-
ber of newsgroups.11 “And then some people started using it,” said Roberto.
“But it was kind of, ‘Let’s see what happens.’” The paper and the announce-
ment started a slow trickle of questions, some of them from abroad.

Lua 1.1 was packaged with an informal license that allowed free aca-
demic use but reserved the rights for commercial use:

Roberto: Something we wanted, that I remember . . . Again someone gave
us this idea to try to sell Lua. In the beginning we put it on the Internet
with a free academic license, and “Please contact us for commercial use.”
So there was this idea “Let’s try to sell Lua.” And then it stayed this way
one year and we got one contact. [Laughs.] Without success. Just a contact

Porting Lua 149

for “Maybe we could use . . .” for commercial use. So, we decided we were
not going to sell it. But after that we noticed that there were people using
it and people were liking it, and we were liking that idea of other people
using Lua.

Lua 2.1, released in the early 1995, included a license written in proper
English “legalese” and allowing almost unrestricted use of Lua for both aca-
demic and commercial purposes.12

The change of license not only gave additional freedom to Lua’s poten-
tial users, but also signified the authors’ changing perspective on what they
could and could not achieve with Lua. Having started with a rather vague
idea of what Lua could lead to and originally holding open the possibility
of selling it for money, they moved to “liking that idea of other people
using Lua.” He then continued:

Roberto: That kind of . . . touched . . . satisfying, a kind of gratification
for us, gratifying, whatever. And so we started to feel good about that.
[. . .] And then we published the article: “Let see, let’s try to get more users,
to promote Lua.” So we put up . . . And then the reaction was very strong,
and then it started to be really important—the outside users.

Consistent with Becker’s theory of motivation discussed in chapter 2, Lua’s
authors did not start off with the intention of distributing free software,
but rather developed the appropriate “perceptions and judgments” as they
engaged in the activity. As members of an academic community, however,
and in particular being fairly fluent in the culture of Anglo-American com-
puter science, from which the free software movement got much of its cul-
ture, they were of course well prepared for developing such perceptions and
judgments.

In 1996, the team published an article about Lua in an American com-
puter science journal (Ierusalimschy, Figueiredo, and Celes 1996), as well
as another one in a popular magazine widely read by American software
professionals (Figueiredo, Ierusalimschy, and Celes 1996). Steve, one of my
California interviewees, remembers originally learning about Lua from one
of those two articles.

The two 1996 publications resulted in an increased stream of questions
and the decision to set up a mailing list.

Luiz Henrique: Around that time, I remember now, we wrote this article
in Dr. Dobb’s Journal and from then on we started to get messages from
abroad, people asking questions about Lua. So, we thought, well, maybe
we are going to get too many questions and won’t have time to answer

150 Chapter 6

them all. So we created the mailing list for that, so that other people could
answer our questions. [. . .] Maybe Lua is going to get some interest, and
how about creating a community? [. . .] If we were going to get a commu-
nity, maybe we should have a mailing list so that they could talk among
themselves? To not have to answer everyone individually.

The list (lua-l) was set up in February 1997.13 With the addition of lua-l, the
language was increasingly starting to look more like a free software project.

Prior to the creation of lua-l, the project had no dedicated mailing list.
(The early users remember no need for it, pointing out that all people using
Lua were by and large in the same place, and often in the same room.) The
English lua-l thus quickly became the central forum for the Lua commu-
nity, attracting many Lua users from PUC, as well as a smaller number from
other Brazilian research institutions. In 1997 the Brazilians (people with .br
email addresses) comprised a little under a quarter of the list’s participants,
constituting the list’s largest “minority.” As the list grew, however, the per-
centage of Brazilian participants started to decline, eventually getting over-
taken by Germans in 2007.

More Exciting Users

A month before the mailing list was set up, Lua’s authors received a mes-
sage from a programmer working for LucasArts, who wanted to congratu-
late them on developing Lua (“Its elegance and simplicity astound me,” he
wrote) and to let them know that he was thinking of using Lua in one of
LucasArts’ games.14 Once the list was created, the programmer became an
active participant and in April revealed to the list that he was working on a
“scripted adventure game engine.” Soon, other users started to discuss their
use of Lua for scripting computer games. A year later, LucasArts released a
game called Grim Fandango, which became Lua’s first international success
case—not quite “used by Microsoft” but a major step toward it.

Grim Fandango also gave it a new “place.” Lua had a new, international
“origin,” now associated with a community that was not narrowly local-
ized. People ask where Lua is from, said Steve. But they do not usually mean
location, but rather which industry or context. For example, JavaScript comes out
of the Web. So, I give two answers: “PUC-Rio” and “the games industry.” While
the games industry was not really the Lua’s origin, he then explained, it
provided a context in which Lua can be understood. People don’t care who
wrote it, he said. They want to know how it fits into the world. The games
industry thus provided Lua with a place where it could belong in a foreign
context.

Porting Lua 151

Lua’s success at LucasArts also gave Lua new advocates, located in about
the best place for promoting Lua. As the LucasArts programmer explained
on the Lua mailing list in 2001, face-to-face interactions in California
were instrumental in helping Lua gain popularity in the games industry.
In 1998, some of the LucasArts programmers attended the Game Devel-
oper’s Conference, the largest trade event for computer games developers,
held annually in the San Francisco Bay Area. One of them made a presen-
tation about implementing scripting languages for computer games. The
talk was delivered to an audience of two hundred to three hundred people
and focused on the difficulty of developing a good scripting language. In
the end, though, the speaker discussed LucasArts’ use of Lua. “People lit
up and furiously started scribbling notes and looked really excited. I got a
few inquiries afterwards, but game developers being who they are, most of
them just went out and checked it out on their own. Soon enough the list
was overflowing with game programmer inquiries.”15 A presentation deliv-
ered at a conference in the very center of the software world brought Lua to
the attention of the larger gaming industry. This attention eventually led to
the use of Lua in a game released by Microsoft Games, giving Lua the crucial
“used by Microsoft” status.

The growing list increasingly became an important source of influence
on Lua. “Tecgraf was kind of stable and was not demanding that much,”
said Roberto. While having a nondemanding employer may be a blessing
in many lines of work, this is not necessarily the case in software develop-
ment. Finding that Tecgraf was no longer presenting serious changes, the
Lua team increasingly turned its attention to the outside. “So I think it was
also kind of like: ‘Let’s try to find more exciting users,’” said Roberto. The list
members supplied the desired challenge, by applying Lua to new domains
and running it on new platforms. Lua’s gradual “porting” to foreign con-
texts went hand in hand with porting in the more narrow technical sense:
Lua was increasingly used on computing platforms that were never used by
Tecgraf, from tiny computing devices to the Cray supercomputer.

Roberto: That put more pressure to make Lua really portable. In the be-
ginning our goal of portability was Tecgraf’s set of computers. So, that was
our goal, must run on that. It was a very large variety of computers that
Tecgraf had, so from the beginning it was very portable. So it must run on
DEC, on VAX, on ta ta ta [etc.]. And then later when people . . . I remember
in ’98 someone wrote and said they ported Lua to Cray, the supercomputer
Cray 1. That was very exciting: “Wow, Lua is running on Cray.” And then
these things started, for instance, to show us that we must really think
about ANSI C and about real standards. And not about “It runs on those

152 Chapter 6

machines and that’s good enough.” For instance, this was something that
came from outside.

Paradoxically, Lua’s origin in Brazil offered it an early start on portabil-
ity. Due to the restrictions imposed by the market reserve, Petrobras had
a limited choice of what computers it used, having to buy from different
manufacturers depending on who had been allowed to bring computers
into Brazil in a particular year. Over the years, it had accumulated a rather
diverse collection of computers, requiring that Lua be run on all of them
(Ierusalimschy, Figueiredo, and Celes 2007). This collection did not include
things like the Cray supercomputer, however.

Demanding and attentive users are often considered in open source com-
munities to be a valuable resource per se, as they help to “push” the project
forward, providing feedback and gratification to the authors. In most suc-
cessful projects users also contribute code, essentially becoming codevelop-
ers. Despite releasing Lua under a free software license, Lua’s authors never
embraced the community-driven approach to software development—all
modifications to Lua’s code have always been done by the three members of
the Lua team. (I discuss the reasons in the next chapter.) Lua’s users, how-
ever, contributed to Lua in many other ways. Many became active members
of the mailing list, helping answer questions and contributing ideas and
resources. In 2000, one of the list members organized a wiki, which became
an important resource for the community. (Steve cited the wiki as the source
of his knowledge that Lua had been used by Microsoft.) A year later, another
member of the list purchased the domain name “lua.org” and donated it to
the team. (Since 2004 another user has volunteered to host the lua.org web
site on his company’s servers in the United Kingdom.) The list members
also offered substantial help with the first edition of Roberto’s Programming
in Lua. Such contributions helped further establish Lua in its new position:
a highly portable programming language easily embeddable in C applica-
tions such as computer games, supported by a networked community.

Breaking from Tecgraf

During the first decade of its existence, Lua was a “Tecgraf project” and
Tecgraf served as “a good home” for it, according to Roberto. This contin-
ued through the late 1990s, even as Lua was increasingly looking outward.
Around 2003, however, Tecgraf stopped paying for Lua development.

While this separation was to some extent expected, some of my inter-
viewees attribute the ultimate break to the transition from Lua 3.2 to Lua

Porting Lua 153

4. Released in November 2000, Lua 4 introduced substantial changes in the
way Lua connected to code written in C. The change was originally moti-
vated by the desire to allow a program written in C to run multiple Lua
programs at the same time. Some of the users had requested this as early as
1998, and this ability turned out to be necessary for one of Tecgraf’s own
projects, called “CGILua,” which aimed to make it possible to use Lua for
developing web applications. (CGILua later became the basis for Rodrigo
Miranda’s Kepler.) The team originally introduced the feature by making
the smallest possible modifications to Lua, trying to make sure that the
new version (“Lua 3.3”) would require almost no changes to the existing
software. However, the limitations of this approach soon became clear, and
the team proceeded to make more and more serious changes to how Lua
connected to C code. Eventually the interface between Lua and C (“the
Lua API”) changed to a point where many existing programs would have
to undergo serious modifications. The team then decided to use the oppor-
tunity to completely redesign the interface, thus changing it even further.
When the new version was released in November 2000, it was deemed suf-
ficiently different to be called “Lua 4.0” rather than “Lua 3.3.”

While offering substantial improvements, the new API made obsolete all
old C code interfacing with Lua. Roberto offered suggestions on how to fix
the old code to make it work with Lua 4, but few Tecgraf projects undertook
such migration.

Roberto: Then there was this big problem of compatibility. I think maybe
this was the main breaking point. [. . .] The change from 3.2 to 4.0. That
was a big change in the API so for people that only used Lua as a language,
it was not that big, but for people that integrated Lua into other tools, the
C API changed a lot and all applications in Tecgraf were in that kind of API
stuff.
Yuri: Was that something you foresaw?
Roberto: The break or their reaction?
Yuri: Well, either.
Roberto: The break [in compatibility] for sure we foresaw, but their reac-
tion, I think . . . We wrote some compatibility code and some things to
help, but people mainly didn’t use it, at all. [. . .] They never changed to Lua
4. So they started to drift apart from the Lua community. I mean, because
everything was written in new manuals, and new discussions and new
tricks and everything was evolving around Lua 4.0 and they were . . .

Even CGILua, the project that motivated the changes that eventually led
to Lua 4.0, never released a version that worked with Lua 4.0. Unwilling to

154 Chapter 6

make the transition, Tecgraf’s projects got “stuck” with Lua 3.2, a version
that soon started to lose the interest for the Lua community. Lua’s and Tec-
graf’s paths started to diverge.

In addition to the practical problem of backward compatibility, Lua 4
set the precedent for introducing features that brought only cost and little
benefit to Tecgraf’s projects. Some users of Lua did not take this well:16

Roberto: I think that they got . . . with some reason I think they got a
little offended with the change to 4.0. I think that’s why it was kind of a
break[ing] point. I think this was the first change that we saw that it could
hurt Tecgraf but we are going to do it anyway. We thought that it was not
going to hurt that much, we tried and thought . . . Not something like “Oh,
we are going to do it because it’s going to hurt Tecgraf.” We tried to mini-
mize that, as I say, we did a lot of stuff to try to do compatibility layers and
things like that. But we knew that it was going to have some problems, was
going to be a big incompatibility.

Lua 4 was therefore not only introducing a technical break with existing
Tecgraf software, but also demonstrating the new priorities of the Lua team.

When I asked Roberto why this new API was introduced, he laughed:
“Because it was really much better.” “But better for who,” I asked. “For any
new user of Lua,” Roberto explained. Making software better for new users
in a way that hurts existing users can be a dangerous move in software
development. However, the new Lua also worked quite well for its existing
foreign community. Many of the list members were interested in Lua as a
hobby and found the quick pace of change engaging intellectually. Oth-
ers used it in games: software that is typically abandoned soon after it is
released. (For example, two “versions” of Grim Fandango were released in
1998: 1.0 and 1.01. No other versions of the game were ever produced. Of
course, some of the users may continue playing the game for years.) As far
as foreign users of Lua were concerned, Lua 4 was a clear step forward and
not only because of the improved API. Lua 4 demonstrated the authors’
commitment to building a good language and their willingness to leave
behind earlier mistakes. As earlier comments by Rich and Craig show, for-
eign users took note of this commitment.17

While some of Tecgraf’s users of Lua complained about this transition,
most of those I talked to in 2007 seemed to consider this sacrifice worth-
while. One early user of Lua said:

Silvio: It was in 4, I think, that the stack was introduced in the commu-
nication between Lua and C. And so whoever had much C code calling

Porting Lua 155

Lua had to make lots of changes. And there were people who really com-
plained: “Oh, darn, must change . . .” But I don’t see it this way. I think
we must keep moving ahead. Lua has to evolve. We are not going to stop
and make Lua stagnate, or stay with an interface that we know is worse,
just because there are people who use it and are feeling lazy to change their
applications. It doesn’t make sense. To stagnate for the sake of stagnation
. . . Those who don’t want to evolve can stick with version 3.2 and use it for
the rest of their lives. It’ll keep working, thank you very much.

In 2001, Lua was clearly showing global potential, and limiting it for the
sake of Tecgraf’s older projects did not necessarily make sense, even from
the perspective of some of the Tecgraf engineers already invested in earlier
versions of Lua. Lua’s success abroad was starting to bring certain dividends
to PUC and Tecgraf (in terms of prestige if not money), as well as individual
people at Tecgraf who, like Silvio, were incorporating Lua into their aca-
demic research. Constraining Lua’s growth was not necessarily in Tecgraf’s
best interest.

At the same time, Tecgraf itself was increasingly looking at other tech-
nologies. The rapid software innovation in 1990s meant that by 2001 Tec-
graf was getting requests for new types of applications and could make use
of new tools for implementing them. The most important of those was
Java—a programming language released by Sun Microsystems in 1995 that
had become the new standard by 2001. Even such committed support-
ers of Lua as Silvio saw those new technologies as better for some of their
projects.

Silvio: It was about six years ago [in 2001] that we started increasing sig-
nificantly the number of projects in Java. [. . .] In 2001 we had a request
from the client, like, “Oh, we want a system with such, such and such char-
acteristics.” And I thought it would be more interesting to use Java than . . .
Because there is this thing . . . There is this saying: “For someone who has
a hammer, everything looks like a nail.” We have to have a toolbox and to
know when to use each tool, right? Lua is a great tool, but it’s not the right
tool for everything. Nobody would expect it to be. For the job that we had
in front of us, the ideal solution was a mixture.

Despite Lua’s oft-cited portability, Silvio’s team found that using Java made
it easier for them to run the application on their clients’ computers without
having to worry about which operating system the clients were using. Addi-
tionally, while Lua still worked best for certain Petrobras-specific function-
ality, Java offered simpler solutions for the more generic problems such as

156 Chapter 6

the construction of user interface. The team settled for a hybrid approach:
the clients used a program written in Java on their desktops, which ran
inside a web browser and connected over the network to a Lua program
running on a remote computer.

While Silvio’s explanation stresses the practicality of the mixed approach,
it also alludes to the engineer’s need to maintain a diverse “toolbox.” Using
Java also offered Tecgraf engineers an opportunity to gain experience with
a new technology that was growing in popularity. For many, this dramati-
cally broadened their options for employment if they were to ever leave
academia and move into the software industry.

While Silvio’s project started as a mixture of Lua and Java, it has gravi-
tated toward Java over time. Those parts of the project that were done in
Java ended up requiring more code than the parts written in Lua. “So today
the project is mostly in Java,” explained Silvio. Other projects started at
the time were done in pure Java from the beginning. For those users of Lua
less committed to the language than Silvio, the break introduced by Lua 4
served as a good opportunity to switch to Java.

* * *
This chapter looked at the history of Lua, seeking to show Lua’s transition
from its creation as a specific solution to a particular need of a Brazilian
organization to its emergence as an international programming language
that in retrospect may appear to have been “born to fly.” As the authors
themselves stress, this global success was neither planned nor even fully
imagined. In many ways, it “just happened,” with the authors’ own under-
standing of the project and its possibilities shifting substantially over time.
In some cases, Lua’s trajectory was likely influenced by luck. It is important
to understand, however, how the project found itself in a position to ben-
efit from lucky circumstances.

Lua started as a “practical” project, aiming to solve specific problems
for a specific client in Rio de Janeiro. This practical focus proved impor-
tant, because it distinguished Lua from programming languages designed
purely in pursuit of academic research. Had Lua been built specifically for
the purpose of advancing computer science research, it likely would have
suffered the fate of School, the research language on which Roberto worked
in the 1990s and which has since been all but forgotten. Lua’s success in
the foreign software industry, however, did not grow out of a success in the
local industry of Rio de Janeiro. Lua never found much use in local compa-
nies and remained largely invisible inside Petrobras. (And while Petrobras
was a rather large client, I never heard foreign users describe Lua as “used

Porting Lua 157

by Petrobras.”) This lack of strong ties to the local industry was probably a
blessing: stronger contacts with the industry would have likely entangled
the language in local relationships so closely as to make its later interna-
tional success quite difficult.

Instead, Lua made its way abroad through linkages between Brazilian
and American academic computer science, as well as those between Ameri-
can computer science and the American software industry. Unwilling to
seriously pursue the option of commercializing Lua for the local market,
the authors made early steps toward globalizing Lua and then made it a
topic of academic papers, published both in Brazil and abroad. Their efforts
benefited from their ability to explain their project in the right language—
both in the sense of literal fluency in English, but also in the sense of flu-
ency in the conceptual system of academic computer science. They had
acquired this competence in part through physical travel to foreign centers
of computer science research (such as Waterloo and Cambridge, UK), as
well as through their access to a local island of computer science research in
Brazil (PUC’s Department of Informatics), which had been constructed in
Brazil through the combined efforts of many people over several decades,
as we saw in chapter 4.

Foreign publications brought foreign users, in part reflecting the strong
linkages between the software industry and academic computer science in
the United States. This in turn helped the authors discover the satisfac-
tion of interacting with a large number of users of the software they wrote,
who not only expressed gratitude but also had the sophistication to truly
understand the virtues of the language—and to push its boundaries. Such
satisfaction is of course similar to the one academics often seek when they
publish their ideas with the hope that they would be valued by peers. The
authors could thus acquire the “perceptions and judgments” necessary for
the development of free software by starting with a rather similar set of aca-
demic “perceptions and judgments,” and then building on them gradually
while interacting with Lua users.

While Lua’s ties to the Brazilian software industry were never strong
and in many ways only weakened over time, this does not mean that the
language has been entirely disconnected from a local system of economic
relations. Lua’s authors did not grow rich from their work on Lua, but their
work did receive financial support in the form of salaries (paid by PUC-Rio,
Tecgraf, and IMPA) and research grants from the Brazilian government.18

It was the nature of this support, the fact that the authors were being paid
not for their contributions to the organization’s short-term profit but

158 Chapter 6

essentially for bringing it longer-term prestige, that made it possible for the
authors to not have to worry about making money on Lua and to instead
offer it as free software.

This chapter has focused on Lua’s gradual disembedding from the local
context and the increased success abroad. As we saw in the end, this success
required breaking some of the local relationships. In the next chapter I turn
more closely to this issue, looking at Lua’s relation with the university, the
city, and the country where it is based to this day. We will also look at some
of the complexities involved in managing a global project from a university
in Rio de Janeiro.

7 Fast and Patriotic

Nineteen years after its first version was developed, Lua is a fairly popular
language, used in a number of well-known software products, both com-
mercial and open source, with the number growing every day. The work
on spillover effects in innovation may lead us to think that Lua’s success
would present an important opportunity for local economic development:
local companies could take advantage of their proximity to PUC-Rio to gain
better understanding of the language and its future directions, finding bet-
ter use for Lua in their products and engaging in related innovation. This is
not the case. At the time I was doing my fieldwork in 2007, Lua was largely
unused in Brazil. Apart from Tecgraf, Nas Nuvens, and two other small
companies incubated at PUC, Roberto Ierusalimschy knew of no Brazilian
companies using Lua. If local companies were using Lua, they were not
advertising this fact. Roberto remembered only a few occasions when local
companies had entered into contact with the Lua team, none of which led
to any extended collaboration. In my five months in Rio that year, I man-
aged to find just one more company using Lua in Rio de Janeiro, bringing
the total to five. By the end of 2008, three of those five companies were
either moving away from Lua or had abandoned it altogether. The situation
has been promising to change in recent years due to Lua’s growing visibility
abroad and its inclusion in the Brazilian standard for digital television, yet
the language has yet to gain wide use in Brazil.

There are several reasons for this lack of local adoption. Some of my
interviewees pointed, sometimes with much frustration, to the Lua team’s
seeming lack of interest in expanding Lua’s use in Brazil. In fact, while Lua’s
authors mention in one of their articles being “bothered” by Lua’s remain-
ing relatively unknown in Brazil despite its growing use abroad (Ierusalim-
schy, Figueiredo, and Celes 2007, 2-9), I could see few signs of real efforts
toward helping local adoption. At the time of my fieldwork in 2007, for
example, Lua had no Portuguese documentation—an issue that did not

160 Chapter 7

seem to cause much concern for the team. A closely related reason is the
seeming lack of fit between what Lua offers and the typical needs of the
local industry. Lua provides clear value for two kinds of software projects:
desktop software with high performance requirements (e.g., games) and
small devices that cannot run the more popular programming languages.
Both kinds of projects typically involve making products. Rio’s software
industry, however, focuses almost entirely on services to local organiza-
tions, which typically involves building web-based systems. Lua offers few
obvious advantages in this domain. This lack of fit, however, can be seen
as a symptom rather than a cause of the disconnect between Lua and the
local industry. As we saw in the previous chapter, Lua’s authors gradually
adapted the language to the needs of foreign industry largely because of
their lack of strong ties to the local industry.

Lua’s disconnection from the local industry exemplifies a more general
pattern of lack of ties between industry and academic research in Brazil,
an issue often noted by my interviewees. There may be several reasons for
such lack of ties. The main proximate reason is the government policy.
Brazil’s government funds academic research in accordance with the per-
ceived academic success of each department and university. Such success
is evaluated quantitatively and involves as an important component a
metric of “intellectual production,” measured by the number of publica-
tions. The publications are weighed by a rating that is assigned to each
journal and conference by a government agency responsible for postgradu-
ate education.1 The rating goes from “A1” to “A2,” then from “B1” to “B5,”
and finally to “C.” Publications in journals and conferences rated “C” are
normally given zero weight. The rating is based on each journal’s posi-
tion in citation databases such as Thompson Reuters’s JCR, which primarily
index English publications. Consequently, for computer science, Brazilian
journals and conferences must usually include articles in English to get
a rating above “C.” Only those that publish articles exclusively in English
get to “B2.” None are rated “B1” or higher (CAPES 2009, 2011). Brazilian
computer science researchers thus have good reasons to publish in “inter-
national” journals and conferences, which usually means those based in
the United States. This in turn requires choosing problems that are deemed
relevant by their American colleagues, whose interests often in turn reflect
those of the American software industry.

A system of government funding that measured success by local use of
research could shift this balance. The policy of giving incentives for pub-
lishing in foreign journals and conferences is not without merit, however,
and its rationale aligns with the other, distal, reason for the disconnect.

Fast and Patriotic 161

Brazilian computer science researchers are located at the periphery of aca-
demic computer science. Brazilian software developers working in industry
are similarly located at the periphery of their professional world. Each of
the two groups must focus on building ties to the centers of their practice,
both in order to keep their practice synchronized with the foreign mod-
els and in order to act as legitimate representatives of the practice locally.
Successful publication in foreign journals provides Brazilian computer sci-
entists the best way of demonstrating that their research is up to “world
standards”—to funding agencies and also to each other. The use of this
standard helps align the individual researchers’ incentives with the collec-
tive goal of establishing the validity of computer science research in Brazil.
Focusing on the needs of the local industry could lead the researchers away
from the central problems of the “global” research practice. This would
make it harder to be confident that Brazilian computer scientists are practi-
tioners of global computer science who happen to be based in Brazil, rather
than practitioners of some “Brazilian” computer science. This could in turn
easily undermine their credibility in the eyes of the local industry.

Local firms similarly find it safer to stick with “standard” technology,
choosing Sun’s Java or Microsoft’s .Net over PUC-Rio’s Lua. Use of locally
produced research is risky since the quality of such work cannot be easily
assessed. Even in cases where the developers may believe in the techni-
cal superiority of the local product, choosing them may be unwise, as it
may scare the clients. (See Fabio’s discussion of Kepler in chapter 5.) This
becomes especially so when the product in question claims to be innova-
tive. “If it only exists in Brazil and it’s not jabuticaba, then it can’t be any
good,” says a popular Brazilian proverb. (Jabuticaba is a fruit tree that grows
in parts of Brazil.) When a local technology does gain some local traction, it
is common to assume that nepotism was the reason. Companies thus often
fall back on the safer assumption that local technology can be ignored as
irrelevant.

To understand the challenges of putting Lua to use in Brazil and of creat-
ing the kind of linkages that could help Lua bring about economic devel-
opment, we would also have to look at the risks involved in linking Lua
too closely to the place where it was born and the challenges of running a
global project from the periphery. As we saw in the previous chapter, Lua’s
success was not planned by its authors and in many ways “just happened.”
This does not mean, however, that continued future success of Lua poses
no challenges. In fact, it only makes the situation more complex for the
authors, who do not fully understand the factors that led Lua to its cur-
rent position and hence have a limited idea of what awaits it in the future.

162 Chapter 7

While such problems may be faced by developers located at the centers of
the software world, we will see that some of the challenges have much to
do with the peripherality of Lua’s authors.

A Little Bit of Actual Patriotism

Even as the use of Lua declined at Tecgraf in recent years, many of the
original users of Lua, such as Antônio and Silvio, have continued to read
the Lua mailing list and maintained an interest in the language. Some of
them have contributed code libraries to Lua. In addition to saying that they
follow Lua because they are currently using it in some projects, Lua users at
PUC typically mention two factors contributing to their continued interest
in the language: Lua’s origin at PUC, discussed as a matter of sentimental
or personal attachment, and the desire to see Lua attain the success that it
deserves:

Silvio: I continue to use Lua in Tecgraf projects, so there is a practical
reason [for following the list] as things happen in Lua, that’s of interest
to me. [. . .] So I want to be a part of anything that happens [on the list]
because it may affect me in a project. The other reason is that I love this,
I am an enthusiast of this language, I love Lua; I think it’s awesome and I
like to read the discussions; I actually do it because I enjoy it. So there are
those two aspects.

When I asked Silvio what he meant by “loving” Lua, he explained:

Silvio: Yes, because I’ve accompanied Lua since the beginning, right? Ro-
berto was my master’s advisor. I mean: undergraduate, master’s, and PhD. I
have a friendship tie with him. Every now and then we go and have lunch
together, he tells me what’s happening, I don’t know what. So I very much
live in this world of this language and I do enjoy it, being a part, seeing
what happens, talking to Roberto, exchanging ideas. So it’s like this. It’s
something I like, really like. Because of the people involved. It’s a fantastic
piece of work.

Other members of the local Lua community at PUC often stressed the same
reasons: Lua was an amazing piece of software demonstrating the genius
of Roberto Ierusalimschy, a person who they considered a friend or a men-
tor; they felt a connection to Lua having seen it from the days when it
was completely unknown. Many added that Lua also brought prestige to
PUC—a university with which they were themselves affiliated. The fact that
Lua had been developed in Brazil or in Rio de Janeiro was rarely mentioned.

Fast and Patriotic 163

In early March 2007, as I was reading through archives of python-brasil—
a Brazilian mailing list dedicated to the Python programming language,
I came across a thread entitled “Python–Lua.” The thread started with a
request for comments about Lua and a question about its advantages and
disadvantages compared to Python. While such questions about “compet-
ing” programming languages sometimes invite hostile responses, most of
the replies were quite positive. One of them read:

Python has a more elegant syntax, a larger community, a more diversified field of

use, better interoperability.

Lua is faster, leaner, more patriotic, more adequate for “embedded systems” [in Eng-

lish] and has a VM for Palm [. . .].2

The next day, I mentioned the thread to Rodrigo Miranda, saying that
“Python people” were discussing Lua on python-brasil. “They said it was
fast and patriotic,” I summarized the discussion. “It is fast,” agreed Rodrigo.
Noticing that he confirmed only half of the statement, I asked him explic-
itly: “Is it patriotic?” “I am not into this kind of stuff,” Rodrigo responded.

While stressing their personal connection to Lua’s authors and Lua’s
connection to the university, PUC users of Lua only infrequently brought
up the fact that Lua was developed in Brazil as a reason for supporting it.
When asked about this explicitly, some, like Rodrigo Miranda, explicitly
denied any interest in “Brazilian” software, sometimes referring to such
“nationalistic” sentiments as demonstrating narrow-mindness or even a
lack of education.3 Others admitted such feelings after some hesitation:

Yuri: But it’s not a matter of Lua being a Brazilian language, I don’t know . . .
Antônio: [Pause]. There is a little bit of this too. Because I know people
who made it. I wanted to help promote it in some way. [Lists several rea-
sons for promoting Lua.] But there is a little bit of this too, definitely. Of
pride, of knowing where it came from, of promoting a domestic software
product [um software nacional]. Definitely.

The Portuguese phrase Antônio uses to describe Lua in the end—“um soft-
ware nacional”—is remarkably ambiguous. While it can be literally trans-
lated as “national software,” such a translation would connote a lot more
patriotic pride than the Portuguese word “nacional” typically implies.
Products that are described with this adjective are often understood to be
local substitutes for foreign products that are either not available or more
expensive. (For example, a visitor to a Brazilian bar may be offered a choice
between an expensive “whisky importado” and a cheaper “whisky nacio-
nal.”) I thus use the more neutral term “domestic” to translate this word.

164 Chapter 7

Considering the baggage carried by the term, it is not surprising that
Antônio seemed uncomfortable saying that he supported Lua as a case of
domestic/national software, mentioning this only when asked directly, and
only after first making it clear that he had many other reasons for support-
ing the language. As in nearly all other interviews, the answer to my ques-
tion about Lua as “Brazilian software” came only after a long pause.

For many educated Brazilians, feeling “patriotic” is quite appropriate
when the Brazilian national football team is playing in the World Cup—
especially in a game against its main rival Argentina. In many other con-
texts, however, “Brazil” is quite often a name for a package of problems
that one must deal with rather than something to be excited about or to
cheer for. In the context of technology, the focus on the national becomes
particularly dangerous, because it suggests parochialism and an inability
to grasp the values of the larger, global technical culture. A good engineer
should not let his judgment be swayed by nationalistic feelings, say the
developers. For those in their thirties and younger, who were consumers
but not producers of technology during the market reserve years, Brazil’s
technological “backwardness” in 1970s and 1980s provides ample proof.

The perception of parochialism that casts its shadow over any local proj-
ects (and which can only be disarmed by personal acquaintance or inter-
national success) can be illustrated by a story told by “Ricardo,” who was
introduced to Lua in 1998 as a student at PUC:

Ricardo: I remember that we had to do a [class] project in C and she [Ro-
berto’s spouse, also a PUC professor] taught a new language, which just
existed for a few years, invented at PUC and called “Lua.” I looked at that
and was like: “Eew! A language invented here at PUC? How stupid! I am not
going to learn this. I’ll never use it in my professional life! What will I do
with it? And I remember there being two parts to the assignment that she
sent us. One part was in C, another part in Lua. And a girl who was doing
a part of the assignment with me . . . [I told her] “Here, do the part in Lua,
because I am not going to learn this stuff, I don’t want to know about Lua.
I’ll do the part in C, which is more interesting, since I’ll use it.”

Despite the fact that the class assignment introduced Lua in the exact con-
text where it was strongest (as a part of a Lua/C combination), Ricardo
avoided any contact with the local language, referring to the very idea of a
programming language developed at PUC as “stupid” (and relegating the
task to a woman).

Responding to such clear expressions of prejudice was about the only
context in which Brazilian Lua users introduced—with hesitation—the
topic of Lua’s Brazilian origin.

Fast and Patriotic 165

Silvio: I think it’s great that Roberto managed this . . . There is also this
other thing . . . It’s like . . . I already saw lots of prejudice against this lan-
guage. It’s impressive how this happens. Like this: I saw one of our clients,
a person inside a company, say the following: “Oh no, I am here trying to
decide whether to use Lua or this Microsoft application. But I think I will
go with Microsoft, because if I use Lua and run into difficulties, my boss
will think I am crazy. And if I use Microsoft and run into issues, that’s not a
problem, because this happens every day.” It’s ridiculous to think like this.
I feel ashamed to see someone talk about it this way. I mean . . . Instead of
being able to use . . . Instead of promoting work that was done completely
in this country . . . [For] the guy not to promote it out of pure prejudice . . .
I think it’s totally ridiculous . . . So . . . Those kinds of things motivate me
to follow Lua, to try to use it. Because I see that the list, most of the people
on the list are not from Brazil, most are foreigners. I saw that Lua has to
succeed abroad to gain acceptance at home. [Pause.] In other words, it’s a
project that I think is fantastic, which I really like. I see Roberto’s struggle
to make Lua work, I see the work he has to do. Lua reflects, deep down,
his genius. And I think Roberto is very good. [Pause.] For those things, I
really like the language and it’s a pleasure for me to follow its growth. For
this reason I don’t leave the list and continue reading it. Even if I don’t say
anything, I stay on the list seeing what happens.

Silvio referred—only in passing—to the possibility of “promoting” the work
done in Brazil. This course of action, however, was presented only in con-
trast to the prejudice that Lua had faced in Brazil over most of its history.

As I mentioned in the previous chapter, American users often indicate
that they “take a global perspective” on things like Lua, concerning them-
selves relatively little with where such software comes from, as long as it
is presented in good English in a way that shows technical competence on
the part of the authors. As indicated by the earlier quotation from Ricardo
and the story related by Silvio, Brazilian software developers often find that
they do not have the luxury of such a “global perspective.” Often working
in contexts where their competence is questioned on a regular basis, they
avoid diligently any associations that may bring accusations of parochial-
ism. Unlike Rich, who became convinced of Lua’s bright future by reading
Roberto’s book and noting the demonstrated global competence, poten-
tial users of Lua in Brazil may themselves lack the cultural skills needed
to decide with confidence whether a programming language book written
in English by a Brazilian author demonstrates the command of the global
software culture or is a failed attempt to fake it. They thus find it safer to
stick with tools whose global status is unquestionable.

166 Chapter 7

While Silvio was disappointed by the “prejudice” with which Brazil-
ians approached technology developed in Brazil, he realized that he had to
accept some of the basic principles underlying this prejudice. To argue for
Lua as a case of national software would be to invite yet stronger prejudice,
feeding the suspicion that those who support Lua do so for reasons of nar-
row-minded nationalism. The best way to counteract the prejudice toward
a homegrown language was to downplay Lua’s Brazilian connections and
look for global credentials that were valued locally. “I saw that Lua has to
succeed abroad to gain acceptance at home,” said Silvio.

Personal ties beat prejudice. A year after dismissing Lua as “stupid” in col-
lege, Ricardo joined Nas Nuvens, a startup working with Lua. At the time of
our interview he was again employed as a Lua programmer for a PUC project,
building software on top of Kepler. He talked about Kepler with enthusiasm,
mentioning among other things “the idea of domestic technology”:

Ricardo: I’ve always been following this Kepler thing and finding it inter-
esting. Rodrigo would always pass by, like this, at PUC, and we would chat
and he would tell me what was happening.
Yuri: But interesting in what sense?
Ricardo: [Long pause.] You see how things change? The idea of it being
domestic technology [tecnologia nacional] . . . [pause], well-structured
[pause]. A proposal for an actual framework for Internet development. To
compete—perhaps Rodrigo would say that it’s not to compete, but let’s
say that for now—with technologies that exist out there . . . I found it
interesting.

The word “nacional” in Ricardo’s phrase “tecnologia nacional” carries the
same ambiguity as it does in Antônio’s quotation above. I consequently
again translate it using the word “domestic.” Ricardo himself points to the
difference between his current interest in supporting technology developed
in Brazil and his earlier scorn for Lua as a student at PUC. This change
seems much to do with his personal engagement with Rodrigo and other
people working with Lua.

After mentioning the idea of “domestic technology,” Ricardo quickly
moved to the technical virtues of the project. I had to ask him to come back
to this idea a few minutes later:

Yuri: What do you mean by the idea of domestic technology [tecnologia
nacional]?
Ricardo: Huh?
Yuri: You said that a part of what made it interesting was this idea of
domestic technology.

Fast and Patriotic 167

Ricardo: Oh, right. [Pause.] Why I find this interesting? [Pause.] It’s hard
to say. It’s . . . [Pause.] I don’t know really. Maybe a little bit of actual patrio-
tism too. To believe that we [a gente] can develop really good, world-class
technology. To be used by people from all corners [of the world], and which
works.

Ricardo’s informal “we” (a gente) appeared to refer to the Brazilians. When I
asked him whom he means by “we,” he confirmed my guess with hesitation:

Yuri: “We” means who?
Ricardo: I can say “we the Brazilians,” or I can say, “we . . . PUC,” “Nas
Nuvens,” “the open source community.” I don’t know, I don’t know really.
It’s like this.
Yuri: But who did you have in mind?
Ricardo: I think that . . . [Pause.] This idea of domestic technology [tec-
nologia nacional], or let’s say developed—if only initially—by people here,
in Brazil. I think this excited me. Even if—“Okay, there are people from
all over the world participating.” Even better! Do you understand? There
are people from all over the world offering recognition to something that
started here. [Long pause.]

Ricardo struggled to bring together two seemingly contradictory ideas:
Kepler and Lua as examples of “domestic” or even “national” technology
(something Brazilians can be proud of), and the “global” nature of those
projects. He arrived at a formulation that was similar to Silvio’s prescription
for Lua’s success: technology produced in Brazil could be a cause of pride
when validated by acceptance around the world.

For Everyone’s Benefit

On my second day in Rio in 2007, I went to meet Rodrigo Miranda, to catch
up on what had happened during the year I had spent in California. One
piece of news that Rodrigo related to me concerned the recent interest that
PUC had developed in Lua. In fact, Rodrigo said, there was now a project, to
which I will refer here as “Iris,” aimed to promote the use of Lua by setting
up a number of publicly visible Lua projects (patterned after Rodrigo’s own
Kepler, described in the chapter 8) and looking for funding from foreign
companies and local agencies. Rodrigo talked about Iris with excitement,
even as he mentioned some of the internal politics around the project and
the fact that the talk had been running somewhat ahead of the action.

When we returned to the topic a few days later, Rodrigo told me that a
little over a year ago he presented the idea to “Chico,” a friend of his, who

168 Chapter 7

at the time was starting to exercise a certain amount of influence at PUC—
at least more so than Rodrigo himself. Chico liked the idea and went to
talk to his boss “Carlos.” Carlos had heard of Lua by then, but did not yet
have a plan for how to use it to PUC’s advantage. He liked Rodrigo’s idea,
however, and took it to his boss. According to Rodrigo, Iris eventually made
it to the highest levels at PUC, and became “a big thing.” As the project
grew in status, PUC managed to line up some money from “Softnet,” a large
American IT company. Now that there was money involved, naturally even
more people were excited.

Rodrigo said he had discussed the plan with Roberto early in the process,
but Roberto perhaps had not taken it seriously, thinking it was another of
Rodrigo’s “crazy” plans, unlikely to ever materialize. After the project grew,
however, Rodrigo told me, Roberto began to hear about it and complained
about not being in the loop. While this had caused some tensions around
Iris, Rodrigo was confident that this was a matter of miscommunication,
and was hopeful that the issue would get resolved, as Roberto would come
to see Iris for the opportunity that it was.

A few days later, Rodrigo introduced me to Chico, who greeted me with
much excitement. After a brief tour of his lab, Chico talked about his efforts
to “evangelize” Lua. PUC had not been paying attention to Lua, he said. But
it’s changing now. At some point, he turned to Rodrigo and remarked: “I am
going to go to the Dean and say: Look, there is a guy from the United States
doing research on Lua! Why are people here not paying as much attention?”

Later that month, with some help from Chico, I met Carlos, who told
me of his reasons for supporting Lua. As he explained, he had known
Roberto for some time, as a friend of a friend, and had heard of Lua before,
but he had not thought seriously about its potential until recently, when
he started noticing its popularity abroad. “When I took this planning role,
and started looking for the potential of the university, what it had,” says
Carlos, “I noticed that there was a fairly big movement actually using Lua.”
Chico’s return to PUC brought Carlos in contact with Rodrigo Miranda
and his ideas about strengthening Lua’s local position. Carlos embraced
those ideas and took them to the university’s administration, making it his
goal to reinforce the links between Lua and PUC, a tie he thought would
be beneficial for both the language and the university. Carlos referred to
his efforts as “evangelization.” “You have to win people’s hearts, people’s
minds,” he explained.

Stronger Lua would benefit not only PUC, but also the city and the
country, stressed Carlos. It could help curb the prejudice applied to local
technology. Unlike younger engineers and scientists, Carlos was not afraid

Fast and Patriotic 169

to come across as someone whose technical judgment was clouded by his
concerns about the future of Brazil, speaking enthusiastically about the
opportunity of local economic development that Lua created:

Carlos: The perception that if we can unlock the value of this language,
it will serve for everyone’s benefit, for Rio de Janeiro and for Brazil. Be-
cause a peripheral country always has this . . . Always: “Oh, no, this is just
made by a Brazilian.” You buy a product in Brazil, if it breaks you say: “Ah,
it’s Brazilian.” You buy foreign equipment, a car, you say: “Ah, look how
wonderful.” If it breaks, the person almost doesn’t even say anything. But
if you bought a Brazilian product [and it breaks], you say: “That’s because
it’s Brazilian.” And this applies to software too. Despite our great position
in banking software, in the financial sector, etc. . . . But Brazil is not very
aggressive in this offshore field.

According to Carlos, Lua could change this perception, leading to new eco-
nomic opportunities for the region.

This change, however, would require support from PUC’s administra-
tion, policy makers, and funding agencies, explained Carlos. Local compa-
nies were unaware of the opportunity Lua offered them, quite likely due to
the same prejudice. The few that understood this value found themselves
unable to find Lua programmers. (Carlos seemed to suggest that the fact
that local companies did not use Lua then in turn meant that there were
few incentives for the programmers to learn it.) This could be changed with
some support. “And what I also presented is that maybe we need to make
an effort to look for resources,” said Carlos. “To bring financing agencies
here, tell them: let’s train Lua programmers.” Such training programs, com-
bined with other forms of support to companies interested in offering Lua
services to foreign clients, could jumpstart a new sector in Rio’s IT market.

The initiative was to be presented a month later in a meeting with the
secretary for economic development of the State of Rio de Janeiro:

Carlos: . . . where one of the proposals that we will bring for him for
the development agenda would be the issue of information technology,
but with a focus on Lua, as Brazil’s differential for offshore. Java could be
in China, in India . . . India has this ease with language, which here in
Brazil—perhaps we do not have that. But without any question, Lua is a
differential where today we have the conditions to quickly form a critical
mass, if we can articulate this. [. . .] We’ll invite financing organs, in the
area of science and technology, the National Bank of Economic and Social
Development, so that they come here, and bring the companies that are
already in the process of religious conversion [catequese] . . . [Laughs.] For

170 Chapter 7

them to also talk about their interests. In other words, you would in a way
be underlining and certifying that this is a Brazilian product, open source,
and even [showing] this creativity here in Rio de Janeiro.

With some support, Rio software companies could start offering outsourc-
ing services in Lua, benefiting from their proximity to Lua’s base. As Lua
would grow (in part thanks to this local business activity) and as long as its
national origin is properly highlighted, its success could help change the
perception of Brazil and Rio de Janeiro by displaying the technical creativ-
ity that can be found in the city.

While wanting to position Lua as “a Brazilian product,” Carlos was also
global in his thinking, feeling that Lua and PUC needed global partners to
make Lua a true success. “Because if Lua has a great reach at the interna-
tional level, if it has a series of qualities that the community recognizes,
why not attract heavyweight partners, big international players, like Softnet,
IBM, to talk about this topic?” he asked, using the English word “players.”
As a first step in this plan, Carlos had recently negotiated, on remarkably
good terms, research and development funding from “Softnet,” which was
to go toward projects using a combination of Lua and Softnet’s technology.

When I discussed the Iris project with Roberto Ierusalimschy, I learned
that he was less than excited about the idea. While this had partly to do
with his fear that Iris would end up competing with his own research group
for “Lua” funding, he also feared the potential costs to Lua itself. “I’m not
sure whether PUC has a clear notion of what it wants to do with Lua,” he
explained.

Even with the best intentions, the project could harm Lua. Legally, Lua’s
copyright belonged to PUC. If PUC were to enter into a contract with a
big company, such a contract would need to be written and presented
with much care to avoid creating an impression that PUC was giving their
partner some kind of exclusive rights to Lua. Roberto seemed unsure that
PUC’s lawyers and administrators would know how to handle this. PUC
had absolutely no experience with free / open source software, explained
Roberto, and little experience with software licensing in general. Lacking
understanding of how free software worked and how Lua fit in the world of
free software (an issue that Roberto himself felt he barely comprehended,
as we will soon see), PUC’s administration risked creating the wrong kind
of ties between Lua and the local context from which it was finally starting
to separate itself.

Among other things, such contracts could highlight the image of Lua
as software from “a South American country”—a product potentially

Fast and Patriotic 171

enmeshed in the bureaucratic complications that one could only success-
fully navigate by having strong local connections.

Roberto: Because one of the main problems Lua had . . . I think now fi-
nally it doesn’t have it anymore, was that people were very unsure about
using a software from . . . as you say, from a South American country, they
don’t know how we think and things like that. So they are afraid, “Can
we use Lua? Is it really free? What they are going to do?” Things like that.
You told me, you know that.4 And then after all these years we kind of
conquered some kind of credibility. “Oh, okay, Lua seems to be something
stable. A lot of people use it, so I don’t think . . . there is not going to be any
problem.” So more and more people are starting to use Lua. And more im-
portant, more and more people are starting to admit that they use Lua. And
then suddenly it transpires that there is a hidden contract done in South
America between IBM or Softnet or Microsoft or whatever and PUC, which
is the legal owner of Lua, that . . . whatever it is in the contract [laughs], it
doesn’t matter very much . . .

Since Lua had been released under an open source license (with the tacit
agreement of the PUC administration), the question of who owns Lua’s
copyright could turn out to be quite irrelevant.5 The uncertainty created by
badly written contracts (or simply bad publicity around contracts written
well) could be enough to scare off Lua’s users. “Nobody wants to go to court
in Brazil to try to use Lua,” said Roberto.

Concerned with unlocking Lua’s value and using it for everyone’s ben-
efit, Carlos wanted to “reinforce the connection” between Lua and the local
context in which it was born. This association, however, was precisely what
had to be undone for Lua’s global success. As Silvio said, to succeed in Bra-
zil, Lua had to first succeed abroad. To succeed abroad, however, it had to
avoid any associations that could go with “software from South America.”
Such successful detachment reduced Lua’s ability to change the perception
of Rio and Brazil. But a slower, more patient approach would perhaps work
better in the long run. “What I would want to happen would be that PUC
got a better notion of the outside value of Lua before a notion of the inside
value,” Roberto said. PUC could do little to enhance Lua’s global position,
but could do much to hurt it.

Roberto’s concerns with Carlos’s efforts to get PUC to pay more attention
to Lua had much to do with his feeling that PUC’s administration did not
have a clear idea of what it meant to run an open source software project.
Despite spending a substantial amount of time thinking about this topic,
Roberto himself was unsure whether he understood all the intricacies and

172 Chapter 7

implications of open source. In the next section, I turn to Roberto’s efforts
to make sense of Lua’s open source future.

Reading Smoke Signals

Despite Lua’s permissive license and the active interaction between the
authors and the Lua community, Lua never fully moved to the open source
development mode: all changes to the Lua code itself have always been
made by the three members of the Lua team, mostly by Roberto Ierusa-
limschy. Roberto explained this decision in part by the need to keep the
language small:

Roberto: Yeah, because I think most other programming languages—
open source—they are much more open than Lua. So they are . . . For
instance, in Python or Perl, you have a lot of people that actually vote for
changes and there are those kind of open decision, open source decision-
making strategies and things like that. You can enter as a committer and
you are promoted as a developer and then you have the right to go and
there is all this hierarchy. And Lua is just the three of us . . . [Laughs.]

I asked Roberto if they had thought about moving to the same style of
development as is used in other open source software projects. “We thought
about not doing that!” he said laughing. As Roberto then explained (and
many Lua users seem to agree), community-driven development works well
for adding features but makes it harder to control the growth of the lan-
guage, not to mention removing features. Since Lua is generally recognized
for its minimalism and small size, it could perhaps benefit more from what
Raymond (1999) calls the “cathedral” approach to software development (a
carefully executed vision of a single architect or a small group) than from
the bustling “bazaar” of open source.

Roberto then added another reason, however: his desire to maintain
control over Lua’s future.

Roberto: The other main point is that we really like—I mean, someone
once said that in kind of a very aggressive way, not that aggressive, but . . .
It’s our language, I mean, we like doing it and it’s . . .
Yuri: Someone said what? That it was your language?
Roberto: Yes, but it was kind of “Nobody has nothing to do with that, it
is his language, he does whatever he wants and he doesn’t care what people
think about it” [says imitating aggressive voice] and I mean, I care a lot
about what people think about it, but I really want to keep this privilege

Fast and Patriotic 173

of—this is the language I developed, I want to have the language the way
I want it.

While Roberto’s desire to develop Lua as he wants it could be understood
as a case of an artists’ concern for the purity of the work, it connected to a
concern that came up frequently in the interviews: the risk of losing control
over Lua.

There were two sources of this concern. One was the inherent uneasiness
of Lua’s position as an international programming language with a base in
the wrong place—“software from South America” trying to make it glob-
ally. The other was the Lua team’s limited knowledge or understanding of
Lua’s use abroad, and especially of the social dynamics of that use.

At the beginning of our first 2007 interview, Roberto suggested starting
with a different question from the one that I first asked him:

Roberto: I think maybe start a little earlier? Because this is something
that I was thinking today and something that I am always thinking. The
main point is that we have a very, very rough idea of the growth of Lua
and how Lua is being used and things like that. We are always kind of . . .
I don’t know if this is because we are in Brazil or if it would be the same if
you were living in Silicon Valley, but my impression is that I always kind
of try to read smoke signals to try to realize that there is a real growth, [or]
there is no real growth.

While Roberto said this issue was always on his mind, it turned out that a
specific event had led him to spend time thinking about the topic earlier
that day.

As Roberto proceeded to tell me, over the course of recent months (from
November 2006 to March 2007) Lua had enjoyed a dramatic change in
its position in TIOBE TPCI—a popular ranking of programming languages
based on Google queries. After spending a long time in the group of the
“next fifty” (languages that TIOBE rated as among “the top one hundred”
but not in “the top fifty,” without assigning them individual rankings),
Lua entered the top fifty in December 2006, and then started a slow ascent
within this group. The March 2007 ranking came out the day before our
interview. Lua had made a dramatic jump: to the twenty-fifth position.
Since most of the software development is done in just a small number of
programming languages, being in twenty-fifth place did not imply a huge
market share and did not yet qualify Lua for TIOBE’s “A level” designation
(which it did reach in 2011). However, it most certainly put Lua on the
map, leaving it steps away from the doors of the most exclusive group in
software: “major” programming languages.

174 Chapter 7

This new success was so substantial that Roberto laughed in disbelief as
he talked about it:

Roberto: [Laughs.] I am not sure if the index is wrong, I mean, it’s a very,
very big jump. It jumped over twenty other languages in one month. Very
strange. [. . .] It’s very strange, I’m not sure if they are right. But the main
point is I have no idea how we are climbing up, what happened in the
world that put us that much [up].

The reasons for Lua’s recent success were largely a mystery to Roberto, who
had to read “smoke signals” from a distance to learn whether Lua was grow-
ing and what factors might have been contributing to its growth. He simi-
larly had little idea if Lua’s use would continue to grow, how quickly, and,
if so, what this growth would bring.

Apart from the discussion on the list, publications and blogs were the
main source of information. “You’re always trying to understand what is
going on,” he said laughing. Roberto told me a story from 1998 when a
well-known columnist writing about programming languages mentioned
Lua, describing it as a small language with a small user base—just some
“tens of thousands” of programmers using it (Laird and Soraiz 1998). While
this user base was described as “small” by the columnist, the estimate far
surpassed the Lua team’s own guesses about the size of its community. Such
occasional surprises made it important to pay attention to what was being
said about Lua.

Roberto: I try to acompanhar, to follow blogs, and I have a link in my
bookmarks. There is a search in Google blogs for “Lua” and “programming”
or “games” and every day I go to see news about Lua in the blogs to try to
have a feeling if there is something new happening or things like that. And
sometimes I see: “Oh, this is interesting.” But sometimes I see something
that I get surprised: “Oh, there is . . .” It’s difficult to . . .

Following Lua news from an office in Rio de Janeiro took some work.
While such uncertainty is inherent in the development of free software

(since its use cannot be easily tracked through sales), especially when it
is done on a small budget without the possibility of expensive market
research, Roberto’s situation was made more serious by his relative isolation
from the place where his programming language was used most actively.
Apart from the interactions on the list and the occasional Lua workshops
(which by that point had happened three times, twice in the United States
and once in the Netherlands), Roberto had very little contact with the pro-
grammers who use the language that he designed.

Fast and Patriotic 175

To understand the community around Lua, Roberto found that he had
to get a better understanding of the “culture” of open source more broadly.
He did so in part by reading a book about open source:

Roberto: Yeah, because there is this culture. For instance, I have this . . .
I just . . . [Rodrigo] Miranda gave me a copy of this book called [. . .] How
to Run an Open Source Project. It’s assumed that an open source project is
something that is open source decisions and . . . It even considers the possi-
bility of . . . what they call . . . [pause] “the benevolent dictator.” Is that the
name? But it must be benevolent, that dictator. [. . .] And it’s exactly because
of that, he said in the book, because there is always this . . . the possibility
of fork if the dictator is not benevolent, or if it’s really a dictator. People
will fork to another project and so . . . I mean, you cannot be a dictator . . .

As Roberto understood it, the author of the book (Fogel 2005; the actual
title is slightly different) saw communal decision making (what Roberto
calls “open source decisions”) as a natural outcome of open source licens-
ing. While leaders of open source projects are frequently referred to as
“benevolent dictators” due to the influence they seem to exercise, their
power is in reality quite limited. The reason for this is the inherent “fork-
ability” of open source projects.

A free software license allows any recipients of the code to not only use
or share it, but also to modify it as they see fit. Having modified it, they
can make a case to other users that their version is actually better than the
original. If the leaders of the project reject the modifications, the users can
still make a choice to use the modified version. This choice potentially cre-
ates a “fork” in the development of the project, with some users sticking
with the direction chosen by the project leader while others (perhaps very
few, perhaps the majority) pursue the alternative paths. The possibility of
forks limits the power of the leader. As Fogel (2005) explains: “Imagine a
king whose subjects could copy his entire kingdom at any time and move
to the copy to rule as they see fit? Would such a king govern very differently
from one whose subjects were bound to stay under his rule no matter what
he did?” (88).

As Raymond (1999) points out, in a section called “Promiscuous Theory,
Puritan Practice,” the right to create forks is essential to any free / open
source license and such licenses can be said to “implicitly encourage” fork-
ing. One could say that the right to gain independence from the original
author by “forking” a project is precisely what makes free software “free.” In
practice, however, forks are rare. As Raymond argues, this happens because
of “an elaborate but largely unadmitted set of ownership customs” and a set

176 Chapter 7

of “taboos.” Convincing the user community to abandon its current leader
is consequently a hard task for the claimant, because it usually requires
a combination of demonstrable technical prowess, communication skills,
and a justification for what is often perceived as a clear violation of a social
norm. Lacking those factors, the claimant will likely be ridiculed. (One
derivative of Lua was subjected to such ridiculing by the mailing list mem-
bers on a number of occasions in 2007 and 2008.) Consequently, project
leaders often do exercise substantial power. In fact, the community’s desire
to avoid forking (which damages the community by splitting it) may actu-
ally enhance the power of the original authors as it leads the community
to gather around the leaders and to constantly reaffirm their quasi-divine
right to run the project.

The possibility of a successful adversarial fork that leaves the project
leaders without the community, however, is ever-present. It looms espe-
cially ominously for leaders who may trust their own technical instincts but
not their grasp of the culture of their users (in particular, all the subtleties
of the unadmitted customs)—or find themselves unwilling to accept what
they see as the demands of this culture. After reading the book, Roberto
decided to take the risk and proceed with what he felt was best for Lua,
disregarding what he understood to be the author’s advice. He remained
worried, however, about the consequences of that decision.

Roberto’s experience with open source illustrates the challenges that
open source presents for software developers at the periphery of the soft-
ware world. While open source software development presents many
opportunities for such participants, producing open source software suc-
cessfully requires higher levels of competency in the software culture than
other forms of engagement in software development. The developers work-
ing for Alta, who produce commercial software for their local clients, must
only project a competent image to their clients and local peers. Their clients
typically have limited grasp of the software culture and, in most cases, have
few options for looking for expertise outside Brazil or even Rio de Janeiro.
The authors of Lua cast their lot with a community of developers based
largely outside Brazil and comprised of many people who are more fluent
in the software culture than are Lua’s authors themselves. This made a firm
grasp of the global software culture crucial for their continued success.

Ginga and Beyond

When I returned to Brazil at the end of 2008, the conflict around Iris seemed
to have been largely worked out. Carlos appeared to have understood some

Fast and Patriotic 177

of the challenges faced by Roberto. He started consulting Roberto more
closely on PUC’s approach toward Lua, and the ambitions of the Iris project
were largely scaled down. On the same visit, however, I learned of a new
development that promised to substantially increase Lua’s use in Brazil: the
language had been included in the Brazilian digital television standard, as
a part of “Ginga,” a “middleware” component based on research done by
another PUC team. Walking through the hallways of the Department of
Informatics, I saw a poster advertising a course on digital TV programming
that included an introduction to Lua. The existence of this “Lua course”
at PUC was important news, relayed to me diligently by a number of my
former interviewees. The course used the Portuguese translation of the Lua
manual, completed by one of Roberto’s PhD students in August 2007. After
the interview, I passed by LabLua to chat with some of Roberto Ierusalim-
schy’s students. I saw Programming in Lua open on one of the last chapters.
The same student who had translated the Lua manual was finishing his
translation of the book, paid from Kepler’s grants. Later that day I gave a
well-attended talk about my own Lua project, the wiki engine that I started
developing in 2007. The talk was organized by Chico, whose research lab
dedicated to running Lua on small electronic devices had by that point
expanded to several rooms. Local efforts to promote software based on Lua
seemed to be starting to add up.

The rest of 2009 saw additional steps toward development of a local
community. In late May the Lua team announced its decision to have that
year’s Lua Workshop in Rio de Janeiro. An email sent to lua-l announcing
the event stated—in Portuguese, followed by an English translation—that
in addition to the traditional goal of bringing together the Lua community,
the workshop had another important objective: “disseminate Lua in the
community and the industry in Brazil.”6 In August Rodrigo set up, with the
blessing of Lua’s team, a Portuguese mailing list lua-br, which had nearly
a hundred subscribers after just a few days. (Today lua-br has close to 700
subscribers, while Lua’s main list lua-l has slightly over two thousand; lua-l
receives nearly ten times the number of messages of lua-br, however.) Such
developments were perhaps somewhat stimulated by my own work—ear-
lier that year I had shared with Roberto, Rodrigo, and Luiz Henrique drafts
of my thesis, which included a version of this chapter.

In the two years that followed, Lua’s presence in Rio continued to grow
but at a seemingly slower pace. While Lua is now available in many televi-
sion sets sold in Brazil as a part of Ginga, the standard also mandates sup-
port for Java. Brazil’s main TV network Rede Globo appears to have decided
to go with Java. (Adoption of Java-free version of Ginga, however, is being

178 Chapter 7

considered by Argentina.) The Portuguese translation of Programming in Lua
has yet to come out. Lua’s place in Rio remains somewhat uncertain.

* * *
This chapter explored Lua’s complicated relationship with the city and the
country in which it was born. As I argued in the previous chapter, Lua’s
global success had much to do with its successful disembedding from the
local context. This disembedding presents both challenges and opportuni-
ties for the local use of Lua. Local developers must master a foreign lan-
guage to use Lua. They also often find that Lua’s strengths do not apply to
the problems they face. There is another important barrier to local adop-
tion, however, which has little to do with Lua’s disconnection from Brazil:
the developers desire to stick with languages more established on the global
scene and to avoid suspicion of narrow-minded parochialism. In that case,
Lua’s distance from its local context in fact becomes an advantage for local
adoption, because it helps Lua gain global credentials that are crucial for its
local success. As Silvio said, he realized that “Lua has to succeed abroad to
gain acceptance at home.” Lua can bring benefits to Brazil (and already has,
by contributing to Brazil’s image as a place of innovative software work),
but this would require continued success abroad and careful management
of its linkages to the local place.

Silvio’s realization reflects a pragmatic recognition of Rio’s peripheral
position in the world of software. In the next chapter, I explore the relation-
ship between local and global innovation in the context of Kepler, Rodrigo
Miranda’s project that aimed to build a web development framework based
on Lua—a different attempt to bring Lua home to Rio de Janeiro, one that
in many ways attempted to reject (or transcend) the limitation of Rio’s
peripheral position.

8 Dreams of a Culture Farmer

“World domination,” Rodrigo said with a smile, his tone suggesting that
the answer should have been obvious. I had just asked him to clarify what
he had in mind when he jokingly raised the question of whether knowl-
edge of Chinese or Japanese would be more important for “his purposes.”
It was a Wednesday afternoon in May 2007 and we were at an a quilo res-
taurant in Copacabana, a typical Rio lunch place selling food by weight—a
quick and relatively inexpensive option, popular among office workers. A
block away was the office high-rise where Rodrigo’s company occupied a
few small rooms and where both of us had been spending most of our time
for the last few months, sharing a tiny office, the backs of our chairs almost
bumping into each other. It was a somewhat odd place to be plotting world
domination. We laughed. A few minutes later we got up, paid (making sure
to ask for a corporate discount), and headed back to the office. We did have
a world to conquer, after all.

Rodrigo, whom the reader has met on a few occasions in the earlier chap-
ters, was a Carioca in his late thirties who had dedicated the last decade of
his life to building a web development platform based on Lua, the program-
ming language discussed in chapters 6 and 7. Since 2005, Rodrigo had pur-
sued this goal in the form of an open source software project called “Kepler.”
I first met Rodrigo during my time in Rio in 2005; he was, in fact, my first
technical interviewee that year. While finding the project intriguing, I dis-
missed it as an outlier, choosing to dedicate my time to interviews with
developers working in more typical companies, not unlike Alta. I stayed in
touch with Rodrigo, however, and as I learned more about Kepler over the
course of the following year, I gradually came to the conclusion that observ-
ing a project aiming to develop a global product based on local innovation
would provide a useful contrast to a study of a “typical” company, focused
on bringing foreign technology to Brazil. When I returned to Brazil in 2007,
I decided to accept Rodrigo’s invitation to study Kepler and his offer of a

180 Chapter 8

desk in his office, using it as a base for my investigation of Lua as well as for
looking at Rodrigo’s own project—the subject of this chapter.

Kepler and the company that sponsored it stand in contrast with both
Alta and Lua, adding important complexity to our exploration of the world
of software. In contrast to Alta, Kepler represents an attempt to create a global
platform—a collection of software developed for the world rather than for
the needs of specific local clients, software meant as a foundation for other
software development rather than a product in itself. While Rodrigo’s talk
about “world domination” was a joke (as were his colleagues’ references to
him as “the Brain” of “Pinky and the Brain”), the project did have global
aims, positioning itself in competition with globally popular web develop-
ment technologies. Its audience lay primarily outside Brazil.

Unlike Lua, however, whose success can be attributed to a combination
of preexisting foreign ties and successful disengagement from the local con-
text, Kepler had to create crucial local alliances, on which it came to rely.
One of those alliances involved betting on Lua itself—a programming lan-
guage developed just a few kilometers away from Rodrigo’s office, by his
former advisor. Rodrigo had also decided to work together with a local com-
pany oriented toward Brazilian clients, using local developers, and drawing
on funding provided by the Brazilian government.1

Paradoxically, local use of local innovation represents a starkly global
move. Using local innovation is something software companies in Silicon
Valley do all the time. It is not commonly done in Brazil, however, where
foreign technology is usually seen as a much safer bet. Rodrigo’s project was
thus simultaneously global and local in important ways—“glocal” to use
Wellman and Hampton’s (1999) term. It drew on Rodrigo’s imagining not
only a global technology platform but also a transformed local place. This
chapter shows some of the challenges involved in pursuit of such glocal
dreams at the periphery of a global world of practice.

Attempting to bring together the resources of local universities, the local
industry, the national government, and the remote world of practice in
pursuit of local innovation that aims to be global in its significance, Kepler
represents the kind of innovation that may be crucial for development.
Understanding its challenges may thus provide valuable insight into the
dynamics of technological development at the periphery.

Making Waves

Rodrigo Miranda grew up in Rio, the son of an engineer and a journal-
ist. As a child, he wanted to become an architect, but an encounter with

Dreams of a Culture Farmer 181

a computer at age twelve led him to a new passion. By the time he was
choosing a college program, Rodrigo knew he wanted to study computer
science. He was planning to apply to the public Federal University of Rio de
Janeiro (UFRJ), but PUC-Rio opened a new undergraduate program in com-
putational engineering at the last moment.2 Since his mother was teaching
at PUC at the time, Rodrigo managed to get a scholarship to study there.

Rodrigo sometimes describes Kepler as the third of the three “crazy ideas”
that he had pursued over the years. The first, an idea for a video game, had
to be put on hold back in college. Rodrigo did not believe he could develop
it by himself and could not convince his friends to join forces. The second
vision, a hypertext database system, was abandoned in 1994 when Rodrigo
saw the Mosaic web browser. The web, however, gave Rodrigo his third
idea, one he had pursued for about a decade when I arrived at his office in
2007: a web development platform based on Lua.

Lua is today often used in computer games, a domain for which it is seen
as being particularly fit because of its performance and ease of integration
with C. Few software companies in Rio de Janeiro, however, build such
products. Instead, most provide software services, which typically involves
development of web applications. Lua is rarely seen today as a good founda-
tion for web development. Yet web development in Lua has a long history.
The first attempts were made in 1995, by a group of PUC students. It was
“a game among friends,” explained one of the participants, arising simply
from a desire to understand the emerging web technologies. Little by little
the project grew features, however. It was then picked up by another stu-
dent, who developed it into a master’s thesis and published several papers
about the project (e.g., Hester, Borges, and Ierusalimschy 1997). CGILua, as
the extended system came to be called, had a number of advantages over
the better known alternatives, and in particular over writing web applica-
tions directly in C, a common practice at the time. While the first itera-
tions of many currently popular methods for building web applications
were being developed around 1996, none were really well known. For a
short time, CGILua was perhaps about the best approach one could use for
building web applications.3

At the same time as CGILua was being developed at PUC, Rodrigo quit
his PhD program there and went to work as a manager in a web develop-
ment company, which at the time built web applications in C and had a
strategy not very different from Alta’s. Being acquainted with the students
who were working on CGILua, Rodrigo understood the time savings that
CGILua offered over building applications in C and proposed using it for
some of the client’s projects. Rodrigo told me his manager refused to even

182 Chapter 8

consider the idea, finding Lua to be a toy language. Rodrigo proceeded to
introduce Lua in the company surreptitiously, while also starting to think
about the possibility of building a complete web development platform
based on Lua.

While Rodrigo was looking for opportunities to pursue his technological
dream, his brother “João” was pursuing his own. Unlike Rodrigo, João saw
himself as an entrepreneur. His dreams, therefore, focused on starting and
running a successful business. In 1997, having earned a small amount of
money in a venture that provided software localization services to foreign
software companies, João wanted to move to a new level: launch a prod-
uct company based on proper development methodologies. In the earlier
chapters I have referred to the company as “Nas Nuvens,” a self-deprecating
pseudonym suggested by Rodrigo and reflecting software developers’ pen-
chant for puns (much like the name “Lua”). “Nas Nuvens” means “in the
clouds” in Portuguese, a name that suggests at the same time a degree of
disconnection from reality (much like its English equivalent) and an asso-
ciation with Lua through an allusion to the phrase “no mundo da Lua”
(literally “in the moon world”), a more idiomatic translation for the English
“head in the clouds.” (The name likely captures Rodrigo’s doubts about
whether the venture was ever realistic, but should not be interpreted as
signifying my own position as to whether the efforts were worthwhile.)

João wanted to start a US-style company, hoping to distinguish himself
from the local competition by a strict adherence to foreign software devel-
opment methodologies and, as far as possible, foreign business methods.
In a particularly stark attempt to follow foreign methods, João decided to
build his company around local research—a practice standard in California
but one rarely pursued in Rio. Having heard Rodrigo’s praises of Lua, João
decided that Lua could prove to be a key strategic advantage for a software
firm based in Rio: close access to the Lua team would help the company
stay abreast of any changes and perhaps influence Lua’s development to its
own advantage, while PUC would provide a steady stream of interns and
employees skilled in the use of Lua. João also decided to start with a focus
on the needs of the domestic market, perhaps expanding internationally
over time.

As João saw it—correctly, I think—the local market needed an easy way
to build web sites with dynamic content. Rodrigo’s experience with CGI-
Lua had proven that this could be done with Lua. Using his ties to PUC,
João acquired a web publishing system based on CGILua that was built by
another PUC student, using it as a starting point for Nas Nuvens’s future
product. He also managed to find startup capital from among relatives,

Dreams of a Culture Farmer 183

friends, and a PUC professor. Soon after, Rodrigo joined the company as
a chief software architect, seeing the venture as a chance to take CGILua
to the next level and build a web development platform based on Lua in
pursuit of his own technological vision. The two brothers were pursuing
two different global dreams—one looking to create a global platform with
relatively little interest in the financial aspects of the venture, the other
looking to build a high-tech company using a foreign model, less interested
in the details of technology to be built. Their parallel pursuit of their profes-
sional dreams, attempting to reproduce the practice centered in the same
place, allowed for an alliance, much like many of the alliances described in
chapter 4, and more generally illustrating the notion of parallel re-creation
of practice that I discussed in chapter 1.

The company’s product was innovative for the time and the company
successfully obtained small innovation grants from FINEP, an agency that
funds industry research.4 João’s superb skills as a salesman then allowed
him to quickly attract substantial capital (about a million reais), hire devel-
opers, and actually build a product, something few entrepreneurs could do
in Brazil even at the height of the dot-com boom. As the product was near-
ing completion, however, João faced a new challenge: finding additional
money to actually launch the product, another two million reais in João’s
estimate. In 2000, as the clouds were starting to gather over the Internet
industry, attracting additional money turned out to be a challenge even
for João. Banks he turned to asked for astonishing interest rates, João told
me. A large foreign company offered to invest, but did not want to do so
alone. João eventually found what appeared to be a solution: the Brazilian
Development Bank (BNDES) offered to fund the project. João knew that the
bank would take months to make a final decision, but decided to take the
risk, seeing few alternatives. When the offer got finalized, however, it came
with a stipulation that the investment would be treated as a loan, to be per-
sonally guaranteed by João, which the bank would be able to convert into
equity later if it so chose. Such terms left João with a risk of accumulating
millions of reais in personal debt while giving the bank most of the profit in
the case of success. In João’s view, this perverted the meaning of “risk capi-
tal.” He decided to pass on the offer and accept that a key ingredient of the
California startup recipe—sensible funding—was missing in Rio de Janeiro.

Nas Nuvens was soon out of money and had to lay off many of the
developers, including nearly all of the most skilled ones, who were also the
most expensive. In California, this would be time to close the business, do
some postmortem analysis, and then try again with a better idea. Brazil-
ian bankruptcy laws, however, João explained, did not make this an easy

184 Chapter 8

option. João decided to keep the company running at a reduced scale. He
ended the lease on the two floors that Nas Nuvens used to occupy, limit-
ing the company to the few rooms where it has been since. The company
shifted its focus to providing services to the customers it already had—an
approach that many consider the only realistic route for a software com-
pany in Rio de Janeiro anyway.

Even this option, however, was turning out to be problematic. Unlike
its competitors, Nas Nuvens had developed expertise in building web solu-
tions using Lua and thus had to rely on CGILua, a rapidly aging platform
that could not provide much of what the clients were starting to expect.
The author of CGILua had by then departed for the United States and the
PUC Lua community had largely abandoned the project, since it was look-
ing to solidify Lua’s success in other domains. (João’s expectations of steer-
ing Lua’s development had proved unrealistic—a tiny local venture was
too insignificant, considering that Lua was being adopted by major multi-
national companies such as Adobe and Microsoft, whose needs were quite
different from those of Nas Nuvens.) Shifting toward services and a closer
relationship with local clients was also making the job less and less attrac-
tive to Rodrigo, who had himself abstained from financial involvement
with João’s venture and could leave at any time to pursue opportunities
elsewhere.

The solution came in the form of government support. By 2001, FINEP
showed less interest in the company’s product, no longer considering it
particularly innovative, as numerous foreign alternatives were becoming
available. In 2002, however, FINEP started providing additional funding
earmarked for open source projects, as part of the Brazilian government’s
broader push to promote open source software that was mentioned in chap-
ter 4. It was thus decided that the company would apply for FINEP funding
for an improved web platform based on Lua to be released as open source.
FINEP’s money and the allure of “open source” would make it possible to
hire skilled developers from among PUC students and alumni and would
satisfy Rodrigo’s desire to pursue his vision. It would also, perhaps, attract
contributions from abroad. Nas Nuvens would get a better Lua platform,
which it could use to provide more competitive services. The project would
be called “Kepler.” As the project’s web site explained, the name alluded to
Johannes Kepler’s discovery that tides on earth were caused by the moon,
and was to suggest that Lua (“moon”) was about to cause some tides.

The funding provided by FINEP was expected to be rather modest, and
the company could not use it to hire as many qualified programmers as it
would need. Rodrigo’s connections to PUC networks, however, helped him

Dreams of a Culture Farmer 185

find students and recent graduates already interested in Lua and willing to
dedicate part-time efforts for less than the market wage. (As many of them
noted, the fact that this was now an open source project was making it
more attractive.) One of the new project members was “Márcio”—a recent
PUC graduate working as a programmer, on a PUC web application based
on CGILua. A dedicated fan of CGILua, Márcio had worked privately to
improve the platform, without advertising his efforts. He had little interest
in Rodrigo’s plans for “world domination,” but Rodrigo’s offer of paying
him to work on Kepler provided a good opportunity to dedicate more time
to improving CGILua by not having to take on other consulting projects.
Others joined the project partly out of interest in Lua and partly as a favor
to Rodrigo, as we saw in chapter 5.

Rodrigo also returned to the Lua list and resumed his efforts to transform
the Lua community to fit his needs. As Lua was typically used as a program-
ming language embedded inside a larger C application—taking advantage
of Lua’s small size, efficiency, and ease of integration—Lua’s community
had traditionally emphasized minimalism and use of highly customized
solutions. The members of the list had thus often preferred to share ideas
rather than actual code, stressing that one project’s code would rarely pro-
vide a perfect fit for another project’s needs. Development of web applica-
tions, on the other hand, required a large collection of software modules
that could be readily used. (In chapter 6 Craig specifically mentioned the
fact that he was not trying to build something like a web server as a rea-
son why Lua seemed appropriate for him.) Realizing that he could no lon-
ger hope to fund the development of all the modules he needed, Rodrigo
attempted once again to convince the Lua community of the importance
of sharing code and assembling a larger collection of modules. The culture
of the Lua community was not quite the “right” culture for open source
development, Rodrigo felt, but that was the community he would have to
rely on. He referred to his efforts as “culture farming,” implying a long-term
investment in “growing” the culture that would then benefit Kepler. Since
Kepler’s own software was now going to be released under an open source
license, Rodrigo used this as an opportunity to “seed” the sharing culture,
actively announcing the release of each Kepler module on the mailing list
and setting up a web site for sharing modules that he called “LuaForge” (a
name chosen by analogy to that of a popular web site called “SourceForge”).

When I first met Rodrigo in 2005, Kepler was relatively well funded and
Rodrigo had a number of skilled developers working on the project. A later
gap in funding decimated the team, as most Kepler developers felt that
working for free was a luxury they could not afford—even though some of

186 Chapter 8

them perhaps wished they could. Márcio, one of the three developers who
remained, took a somewhat different approach: continuing his involve-
ment in the project but refusing to take money for it. This gave him the
freedom to pursue other sources of income without constraining himself
with a commitment to Kepler, which was too unreliable as a source of
income.

While the development had slowed down substantially, the work done
in 2005 was starting to pay off and the project was slowly attracting some
users. In the spring of 2007, the project’s mailing list (run in English, of
course) had around one hundred people, who were increasingly involved
in the project, at least to the point of asking occasional questions. Addi-
tionally, the Lua community was gradually warming up to the idea of shar-
ing modules. LuaForge included around two hundred projects, with several
new projects getting registered in a typical week. This was giving Rodrigo
hope that the project perhaps could succeed. “My friends used to call me
crazy, now they just say I am insane,” he explained to me.

Opening Kepler

On one of my first days in Rio in 2007, Rodrigo told me he had a habit of
going to PUC roughly once a week, to talk to the two Kepler contributors
who worked there—Márcio, the PUC graduate who was working in PUC’s
IT department, maintaining an administrative web application based on
CGILua, and “Tiago,” a PhD student of Roberto Ierusalimschy. (A third
major contributor, “Alan,” used to be there as well but had just recently
moved to Porto Alegre, about a thousand kilometers southwest of Rio de
Janeiro.) Occasionally, he would also meet with Roberto, Chico, and oth-
ers members of the local Lua community. A week later I was in a taxi with
Rodrigo, going to PUC where I expected to sit through his typical meetings,
observing the routine.

As soon as I got into the taxi, however, Rodrigo handed me a printout
of a web article, in English, entitled “Financing Volunteer Free Software
Projects” (see Hill 2005). I scanned it briefly. The article argued that paying
open source developers was a dangerous practice, since paid labor would
tend to “crowd out” volunteer contributions. In other words, paying some
people would make others less willing to work for free, and even those
that were paid might work less, since they would now see their work as
an economic transaction. This article, explained Rodrigo, had helped him
identify the problem that had plagued his project for a long time. He was
releasing his source code under an open source license, but was not running

Dreams of a Culture Farmer 187

Kepler as a “real” open source project. He was hiring developers with the
money provided by FINEP, and they worked while they were paid. When
the money dried up (as was the case for most of 2006), the work stopped.
Plus, he simply could not hire all the developers he needed: FINEP funding
was limited and could only be used to pay people in Brazil. He had hoped to
get people from other countries to participate without pay, but this had not
happened. He had to get them involved. Perhaps this would require that
he stop paying his current developers, even though the project depended
on them.

We arrived at PUC and went to meet Tiago, a computer science PhD
student Rodrigo paid to work on Kepler a few hours a week. We found
Tiago in a small room that he shared with three other students. The three
of us went into a conference room across the hallway and sat down under
a whiteboard covered with set-theoretic formulas, half in English and half
in Portuguese. After some brief introductions, Rodrigo announced that he
had something important to discuss. He wanted to start running Kepler
as a “real” open source project, he told Tiago. Kepler was a project with
open sourced code, he said, but a closed development method. He wanted
to change this. Perhaps the fact that Alan had just moved to Porto Alegre
would make this easier: Alan’s departure already made it impossible to
resolve all the issues in face-to-face meetings at PUC, and they had to dis-
cuss most of the decisions by email and instant messenger. Now they just
had to take it a step further. He wanted to start discussing more things on
a mailing list, openly, explained Rodrigo. Of course they would use English
for those discussions. Kepler already had a mailing list operating in English,
used primarily for announcements. This list could become the center of
the Kepler project, the new forum for the discussions that up until now
occurred inside PUC walls. Tiago listened to Rodrigo speak, occasionally
asking clarifying questions.

“This finishes the Weird Ideas of the Week part,” said Rodrigo finally.
“Now the practical part.” Rodrigo and Tiago spent the next half hour talk-
ing about specific problems with the launch of Kepler 1.1. Even so, Rodri-
go’s suggestion of changing the model repeatedly seeped back into the
discussion. They needed people to test, Rodrigo said. Perhaps people at Nas
Nuvens could help, but this was also the sort of thing that mailing list
members could assist with. Perhaps there should be a list of tasks on the
web site where people could go and see what needs to be done. Rodrigo
gave an example: a new person had appeared on the mailing list, asking
what he could help with, but Rodrigo did not know what to tell him. While
yearning for outside participation, the project was not organized so as to

188 Chapter 8

take advantage of it. There should be a page with tasks, said Rodrigo, some
of them in red. In this case, they could tell new people: go to that page,
pick a task.

We walked Tiago back to his room, chatted briefly with other PhD stu-
dents there (as I later found out, Rodrigo was courting one of them to work
on Kepler), then headed to meet Márcio, the other contributor. We were
going to meet Márcio outside, near a kiosk that served coffee. While wait-
ing for Márcio, I asked Rodrigo about the move to English. It was simply
pragmatic, he explained. He had to draw on developers outside Brazil, so
he needed a mailing list in English. He did not have the time to maintain
two lists. Brazilians interested in Kepler would know how to read English
and usually would know how to write it as well. Plus, Kepler had almost no
documentation in Portuguese, so there was no meaningful way of engaging
with developers who did not read English. Requiring Kepler contributors to
discuss all the project plans in English on the mailing list would perhaps
inconvenience them somewhat. Rodrigo was confident, however, that they
were capable of doing this and would agree to do it if asked. When Márcio
arrived, Rodrigo presented him with a much-condensed version of what he
had said to Tiago. Márcio nodded, apparently finding no problems with
this. Seemingly contradicting the new plan to move decision making from
face-to-face discussions to the mailing list, Rodrigo and Márcio then pro-
ceeded to quickly discuss the state of specific subprojects.

Sometime later I had a chance to talk to Márcio about the proposed
changes. He seemed divided. He did not share Rodrigo’s desire to conquer
the world, he explained. He did not care if Kepler was popular, he said. He
wanted it to be good. That was the difference, he repeated: “Rodrigo wants
Kepler to be popular, I want it to be good.” When Márcio started working
on Kepler, he did not expect it to be successful—it was a fun project that
also paid some money. Now it had succeeded, however, and Márcio hoped
it would succeed more. It was good for the world to know, he said, that here
in Rio de Janeiro they were doing something interesting. For this reason,
he supported Rodrigo’s plan. He agreed that further success would require
opening the project to outside participation and moving all decision mak-
ing to the English mailing list. Doing so meant more work, but the effort
was worth it for Kepler’s success. But sometimes, he then added, he found
himself just deciding not to write.

A week after my first visit to PUC with Rodrigo, we were again at PUC,
sitting at a picnic table not far from the Department of Informatics, together
with two other people. One was a potential future contributor Rodrigo was
courting at the time. Another one was Renato, a close friend of Rodrigo

Dreams of a Culture Farmer 189

who was always willing to lend Rodrigo an ear when Rodrigo needed a sym-
pathetic listener. Rodrigo talked again about the idea of moving to an open
source model and getting people on the list to contribute more. He did not
really know how to do that, he said, since he had never run this kind of
project before and his knowledge was only theoretical. “I have read books,
articles on the web, talked to Yuri,” he said, naming three foreign sources
of information. But it had to be done. Kepler could not just rely on the
efforts of local developers funded by FINEP. FINEP’s funding was unreliable
and paid only for new development, not for the work involved in keeping
the software up to date, such as fixing bugs reported by the users. He had
to find people who would be willing to contribute even without pay. And
he had to look for such people outside. This “outside” (lá fora) was poten-
tially ambiguous, as it could mean either outside the project, or abroad. In
this case, however, the two largely coincided. Looking for help outside the
project meant looking for it abroad, through Lua’s mailing list. The theory
of open source suggested that this could work. In practice, he did not know
how it would work out. As Rodrigo talked, the rest of us just sat listening
and asking clarifying questions. Our job was to help Rodrigo feel that his
plan was not altogether crazy.

When we got up, it was clear that the decision had been made. The next
day, an email to the Kepler list informed subscribers that the list was now
going to function as a “real” open source project. The lengthy message,
entitled “Opening Kepler,” started as follows:

Hi,

This mail got a lot bigger than I imagined at first… :o)

As you have noticed, the conversion of Kepler to Lua 5.1 is taking a lot longer than

expected.

Not only we have found that this involves more work than we assumed, but also that

the development model being used until here is not working as well as we would

like.

The Kepler team is currently using a model that involves too much communication

outside the public channels (this list and the site for example). We are trying to edu-

cate ourselves in order to change that, but this is not exactly easy for a team used to

rely on interpersonal communications.

After laying out a detailed plan for specific Kepler components, Rodrigo
concluded by saying:

As I hope you can notice by this mail, we are trying hard to move to a more open

development model. That includes using this list in a different way and opening the

site wiki for others to contribute.

190 Chapter 8

Before going on, we would like to know what you think about the general idea and

what other ideas could be added to this “new vision.”

Thanks in advance for any suggestions and thanks for reading that much…

Rodrigo

The three subscribers who responded to Rodrigo’s message expressed sup-
port for the plan. For some of them, Rodrigo’s decision to “open” Kepler
may have seemed obvious and natural. For Rodrigo, however, it repre-
sented an important transition and an entirely different way of organizing
the labor that was to go into his vision.

Working the List

When we came back from lunch on that May Wednesday, we turned our
attention from Rodrigo’s long-term plans for “world domination” to the
task at hand. Rodrigo and I were working on a chapter for an upcoming
book about Lua programming. The chapter presented an opportunity to
promote Kepler, putting Lua web development side by side with such
accepted uses of Lua as embedding it in games or running it on micro-
controllers. Our chapter focused on implementing in Kepler a “model–
view–controller” (or MVC) application. MVC was a popular approach to
organizing software applications and had been growing in popularity in
web development for the last few years. Allowing MVC development in
Kepler was one of Rodrigo’s projects for this year. This goal, which seemed
natural to me, was not shared by all of Kepler’s contributors, Rodrigo com-
plained. Márcio, in particular, felt no need for it, preferring the methods
that Rodrigo considered outdated. Rodrigo talked about having to explain
to Márcio that he had to implement MVC “to please his friends.” Unsure
whether the phrase referred to the foreign users of Kepler, on the mail-
ing list, or to people in Rio, I decided to ask. Being in perhaps too jovial a
mood, I phrased the question in a somewhat unfortunate way: “Are you
talking about your real friends or your imaginary friends?” Rodrigo was
taken aback by the question.

I do have a real friend, said Rodrigo. He mentioned Renato—a close friend
who was with us at PUC when Rodrigo was finalizing his decision to open
up the project. Renato was always willing to listen and be supportive. Per-
haps too much so. The problem was that Renato would say “This is very
interesting” to almost anything. Renato was too busy with his own job to
follow Rodrigo’s interest in depth. He was willing to express support, but
had no ability to accompany Rodrigo in the journey. Rodrigo then turned
back to Kepler contributors—not exactly friends, but perhaps colleagues, he

Dreams of a Culture Farmer 191

explained. For some of them, such as Tiago, Kepler only made sense with
MVC. Others, like Márcio, saw no value in this approach. Rodrigo had to
find a way to navigate between them, and his new approach of relying on
intrinsic motivation was making this task more challenging.

We returned to work. I read a section Rodrigo had drafted, then proceeded
to work on the next section, which we had agreed I would write. Rodrigo,
meanwhile, dedicated himself to implementing a change to the Kepler code
that we had discovered we needed to present a more elegant example in our
chapter. (The chapter was describing a version of Kepler that had yet to be
released, so we had the freedom to change Kepler to fit our description of it.)

By 4:30 p.m. Rodrigo had completed the change and sent out a lengthy
email to the Kepler mailing list, describing the problem we had encoun-
tered and the proposed solution. It concluded with a request for comments:
“What do you think about the change?” As he finished the message, he
shouted out, as if talking to the people on the list: “Answer! Because I am
lonely here, sitting in this room with a crazy Russian guy!” Indeed, Rodri-
go’s pursuit of his open source vision was straining his local ties, and if the
hypothetical foreign contributors were to remain silent, he would be left
with little company other than his resident ethnographer. After reading
Rodrigo’s message, I posted a brief response, pointing out an additional
benefit of the proposal and raising the possibility of an additional change.
Rodrigo saw the new message in his inbox. “Oh, someone answered!” he
exclaimed. “Oh, my friend Yuri!”

As I read Rodrigo’s message, however, I noticed a problematic ramifica-
tion of the change we had proposed, realizing that it would break some-
thing else that our examples depended on. I turned around and mentioned
this to Rodrigo. We went to Nas Nuvens’s lobby, planted ourselves in the
two beanbags, and proceeded to discuss the problem for a long time, even-
tually coming up with a better solution. Rodrigo returned to his seat and
wrote another email, describing the problem we had found and the new
solution. “Again, if someone is still with me, comments are welcome,” he
concluded.

Another hour later, while Rodrigo and I were having a late dinner
around the block (a different place from where we had lunch, since we were
celebrating the day’s success), a list member “John” responded to Rodri-
go’s second message with a short follow-up question. His message ended
up being the only one in this thread written by someone outside Rio de
Janeiro. (Of course, we did not know where John was, but it seemed safe to
assume he lived abroad.) Rodrigo responded to John’s question after getting
home; I replied to Rodrigo from home in the middle of the night, this time

192 Chapter 8

disagreeing with his response. Another message from Rodrigo, just a few
minutes after mine, was the last one in the thread. Next morning Rodrigo
committed the change to the code repository.

This email conversation on an English mailing list, in which all but two
sentences were written by the two of us, who spent most of our day sitting
in the same small room, could seem strange and almost farcical. We were
resolved, however, to continue developing Kepler in an “open” way, hop-
ing that someone would join us eventually. Turning Kepler into a global
project, a translocal place where space would seem to no longer matter (and
where foreign contributors’ labor would be marshaled from Rio de Janeiro),
would require substantial work on the ground. We did not expect it to be
easy, and even small successes counted.

As we were having dinner, I asked Rodrigo if he really felt that he was
alone, talking to himself, as some of his earlier comments suggested. No,
he said. He had a hundred people on that mailing list, after all. He did not
expect them to write code, it was enough that they read what he wrote
and commented, if only occasionally. This, pointed out Rodrigo, was much
more than what they did up until March! I asked Rodrigo if his hopes were
really limited to the foreign participants just asking questions rather than
actually making contributions. He did not expect them to contribute code,
said Rodrigo. But maybe they will, he added.

Megalomania

Rodrigo’s distinction between his expectations and what might happen
reminded me of another conversation from earlier that day. In the early
afternoon I had stepped outside of Rodrigo’s office to get some water. There
I ran into Pedro, one of the Nas Nuvens’s employees whom we met in chap-
ter 2. Pedro worked in customer support as well as software development.
While he was still working on his undergraduate degree, and was doing it
through a night program at Estácio de Sá, a private university that could
hardly be compared to PUC, Pedro was considered by Rodrigo to be one of
the most promising people at Nas Nuvens. (All PUC graduates had long left
for better salaries. A few months later Rodrigo helped Pedro get into PUC’s
prestigious master’s program in Computer Science. Another year later Pedro
left the company, having become overqualified for the salary Nas Nuvens
could pay him.)

Pedro was surprisingly dressed up: black pants, a white shirt, and a tie.
He had sunk himself into a beanbag, which made his attire seem even more
out of place. It turned out that he was presenting the final project for his

Dreams of a Culture Farmer 193

undergraduate degree later that day—a web application written in Ruby-on-
Rails, a recently popular web framework for Ruby, a programming language
somewhat similar to Lua and seen by some as one of its main competi-
tors. (Developed in Japan, Ruby was little known for years until it suddenly
exploded in popularity. As another peripheral language and a former under-
dog that had at last made it big, Ruby had a special place in the imagination
of the Lua community.) We talked about the report Pedro had to turn in
for the project. I asked in which language he wrote it. “In Portuguese,” he
replied. “It has to be in Portuguese.” Intrigued by his “has to be,” I asked
in what language he had written the code. The code was all in English,
explained Pedro. Unlike the report, the code could be in English, since only
the advisor had to look at it, and the advisor knew English. So it was all in
English, he continued: the names of functions and variables, as well as the
comments—all but the report.

“Why?” I asked. Pedro laughed before answering. “Out of megaloma-
nia,” he said then. He explained that he and his partner wanted to think
that one day people abroad would be using their code, perhaps even con-
tributing. Writing the code in Portuguese would exclude all of those people.
Of course, making their code in English excluded some Brazilians too, con-
tinued Pedro. But those people were already excluded. The code was based
on Ruby-on-Rails, which was documented only in English. Ruby-on-Rails
function names were in English too. One could not work with it without
knowing English. If Pedro were to start a company around his final project,
he would not consider hiring anyone who did not know English. But again,
he summed it up, it was also about megalomania. What if he decided to
hire a developer in India? If his code were in Portuguese, he would not be
able to do this.

Was Pedro joking? On the one hand, he had to be. Someone in Cali-
fornia talking about “hiring a developer in India” had most likely worked
closely with developers from India (perhaps having found himself on a few
occasions as the only non-Indian in a conference room) and would likely
know people who had traveled to India’s outsourcing capitals. The decision
to hire a developer in India would thus be a practical question, a matter
of cost-and-benefit analysis. Things could not be more different for Pedro,
who had never met anyone from India or even anyone who had traveled
there. Pedro’s wages (and those of most programmers in Rio) were hardly
high enough to justify hiring programmers in India to save money on sala-
ries. The talk of outsourcing was thus not a matter of planning for cost sav-
ings, but a matter of dreaming about one day entering the same league as
the big global players.

194 Chapter 8

This dream was so far-fetched that Pedro himself called it “megaloma-
nia.” Having learned those global dreams from the global technical culture
in which he engaged virtually, Pedro maintained an ambiguous attitude
toward them. This was not something he was ready to defend publicly as a
plan for action, and he was ready to laugh at his own global imagination.
Yet, he did write all his software in a foreign language, entertaining the pos-
sibility that those dreams just might come true.

Pedro’s story made explicit the ambiguity of global imagination that
came up in more subtle ways in numerous conversations with Brazilian
software practitioners, including those involving Lua. This ambiguity could
be understood in two ways. One approach is to liken it to what Favret-Saada
(1980) calls “I know . . . but still . . .” in her discussion of witchcraft in
France (51). Favret-Saada describes the ambiguous approach to witchcraft,
which combines the public acceptance of the rational view with a sup-
pressed belief in witchcraft, rarely verbalized and quickly withdrawn upon
questioning, yet strongly affecting what people do.5 Pedro’s plans show a
similar duality, being powerful enough to actually affect practice, yet not
defensible in public and eagerly labeled “megalomania” upon interroga-
tion. A somewhat different, but closely related, approach is to look at such
global dreams as a game of make-believe, a simulation of a global practice.
Regardless of whether Pedro’s project had a global future, writing the code
in English and imagining future plans for hiring programmers in Bangalore
could similarly be entertaining, a way of doing in imagination what could
not be done in reality.

Regardless of the attributed motivation, however, it is important to rec-
ognize the commonality and the powerful effects of this form of imagina-
tion, which I call “subvocal” (by analogy with “subvocal speech”—a form
of speech that involves actual movement of muscles without producing
audible words). While dismissing his plans as “megalomania,” Pedro did
write his code in English. If he were to start a company and hire other Bra-
zilian developers, such developers would have to work with Pedro’s English
code. Pedro’s subvocal imagination was therefore having tangible effect on
his own practice and possibly that of others.

Like Pedro, Rodrigo had a “megalomaniac” dream of running from
Rio de Janeiro a major international open source project, a web develop-
ment platform that could compete with the popular frameworks for Ruby,
Python, and Java. Like Pedro, he repeatedly described his dream as “crazy,”
a part of his half-humorous plan of “world domination.” The word “crazy”
(maluco), was in fact one of the most common words that he applied to
himself, his work, and the people he respected. Unlike Pedro, Rodrigo had

Dreams of a Culture Farmer 195

actually invested a number of years of his life into his “crazy” dream pub-
licly. He thus could not as easily dismiss it as a joke. Instead, he embraced
the image of a crazy dreamer. Even so, many of his plans fit within the “I
know . . . but still . . .” space.

The Windows Build

As we celebrated the day’s success that Wednesday, Rodrigo was in a positive
mood, focusing on what Kepler had achieved rather than on the project’s
troubles. This contrasted sharply with many of the days from the previous
month, during which the themes of “being wrong,” being “alone,” and just
“giving up” had come up again and again in our conversations. (The dif-
ference, I suspected, had much to do with the fact that the two of us were
now actively working together side by side.) Two weeks earlier Rodrigo had
shown me a checklist page he had created on a wiki. The problem, he said,
was that nobody seemed to want to follow it. Tiago and others did not even
think Kepler should be making releases. Perhaps they were right and he
was wrong. He had fought with the Lua community for a very long time,
trying to make Lua into something that the majority of the users seemed
to have little interest in. Perhaps he was just wrong. He was all by himself—
even those who were working on Kepler with him were not in agreement.
(He was not planning to give up, Rodrigo explained on a number of occa-
sions, but the possibility was always there on the table. After all, while Nas
Nuvens could not give up on Kepler, he could do just that, perhaps joining
his friend Renato as a manager of Java developers.)

One particular source of contention was the installation process. Like
other software systems with a part written in C, Kepler’s code had to be
compiled or “built” before it could be used. This process—“the build”—
could in theory be left to the users, and the Lua community had histori-
cally stressed this approach, since most users of Lua were themselves skilled
developers working on software products written in C and were assumed
to be capable of handling the compilation step. It meant, however, that
compared to other languages used for web development, Lua was quite dif-
ficult to install. This created a problem for Nas Nuvens, whose customers
did not have the expertise to compile software on their own. Simplifying
the installation procedure was therefore one of Rodrigo’s main projects in
the spring of 2007.

The problem could be broken in two: one approach for users of Unix-
based systems such as Linux, and another for users of Windows. The first
problem was easier: users of Unix could be expected to have the software

196 Chapter 8

tools needed for software compilation and be accustomed to compiling
source code into executable software on their own machines, at least as
long as the process was automated and did not require too much tweaking.
Rodrigo also had access to Unix enthusiasts among PUC students. In 2006,
he used FINEP money to hire Alan, then a PUC master’s student. By April
2007 Alan had written a robust “build script”—a program that could be used
to compile and install Kepler on a wide range of Unix machines, which I
then helped test and document. With the new script, a user could down-
load, build, and install Kepler in less than a minute, making the process
of installing Kepler on Unix computers quite trivial. Among other things,
this made it possible to easily set up Kepler on Dreamhost, one of the most
popular solutions for cheap web hosting at the time. By mid-April we were
even “self-hosting”: Kepler’s new site was driven by a rudimentary wiki
engine that I had implemented in Lua using Kepler’s software. Since almost
all Kepler contributors used Linux or other variations of Unix for their own
server needs, the general opinion seemed to be that Kepler 1.1 was done.

Rodrigo, however, wanted to have a version of Kepler that could be used
on Windows—partly due to the fact that he believed this would open a
wider “market,” but mainly because nearly all of Nas Nuvens’s costumers
ran Windows. (Rodrigo and many others sometimes attributed this to their
being in Brazil, not yet on the Linux bandwagon.) Making Kepler work on
Windows was a challenging task, however, both because of the quirks in
the Windows build system and because of the Windows users’ high expec-
tations for the ease of the installation process.

A further challenge lay in finding people to do the work. The develop-
ers to whom Rodrigo had access appeared to be divided into those who
did not have the skills for the task (e.g., the developers employed by Nas
Nuvens) and those who had the skills but lacked interest. Tiago, in par-
ticular, had the knowledge necessary to solve this problem (and had done
this for the earlier release), but was more interested in other aspects of the
project. Following the new policy of relying on developers’ intrinsic moti-
vation rather than simply just hiring them to do tasks, Rodrigo decided to
not press, hoping instead to find volunteers among the list subscribers. A
few people expressed interest in helping (a big improvement from Febru-
ary, noted Rodrigo), but none were willing to lead the task. By early May
Rodrigo had to face the fact that, if there were a Windows build, it would
have to be done by him.

Rodrigo’s attempt to do the Windows build, however, made it clear
that despite good high-level understanding of the technology behind
Kepler, he was unable to make sense of the details of the software, which

Dreams of a Culture Farmer 197

had been written by others. More generally, he was out of practice even
when it came to Lua programming, not to mention compiling C code on
Windows. Rodrigo struggled with the build scripts, occasionally having
to rely on me to help him out. As frustrating as this process was, however,
the Windows build proved a blessing in disguise. As Rodrigo was starting
to understand, getting his programming skills back was not just a matter
of solving the specific practical task of completing the Windows build.
It was also a matter of adjusting to the change in the rules of the game
brought about by “opening” Kepler, following through on the course he
had already chosen.

As many people pointed out to me, in Brazil, where less educated techni-
cal workers are abundant and cheap and where many needs of the domestic
market do not require high skill, highly educated people like Rodrigo get
promoted quickly out of programming jobs into management. Those who
are thus promoted often lose their hands-on programming skill quickly, in
part due to the fast pace of change in the software technology. They often
lament the loss, but stay in management. Rodrigo’s friend Renato, working
as a manager in a local software company, often talked about his desire to
get back to programming, carrying a copy of Programming in Lua in the back
seat of his car. Renato’s management job, however, kept him quite busy
and left him exhausted at the end of the day. Renato still wanted to think
of himself as a “computer scientist,” but appeared to be “stuck” in manage-
ment work indefinitely.

Rodrigo, whose first job after leaving the university similarly involved
managing software developers rather than writing code, had stayed more
closely involved with technology, but had similarly become more skilled at
bringing together people, ideas, and resources than at getting code to com-
pile. Rodrigo usually described his role in the project as “an architect”—a
term that denotes someone who provides the larger technical vision for the
system. At times, however, he suspected that his role was turning into that
of “a PHB”—the “pointy-haired boss” from Dilbert cartoons.

Rodrigo’s desire to develop (or, rather, lead the development of) some-
thing more than a customized system for a local client, required software
developers with a higher level of skill, who would need to be paid high sala-
ries. If Nas Nuvens had been successful in attracting the additional invest-
ment, Rodrigo could proceed to hire such programmers and could himself
focus on directing the work. The small and unreliable funding that the proj-
ect was getting, however, was proving to be insufficient for this. “As far as
C programmers go, I know a few,” said Rodrigo, “As far as C programmers
who want to work for free on a Lua platform—I don’t know any.”

198 Chapter 8

The dearth of local programmers willing to work for free (or for unreli-
able pay) on a Lua platform could be solved in two ways. One was Rodrigo’s
local “culture farming” efforts, getting PUC graduates interested in the proj-
ect through a combination of financial and cultural rewards. As Rodrigo
had decided earlier that year, however, the main solution had to involve
attracting foreign open source developers. He soon discovered, though,
that getting the help of external developers required an entirely different
currency, one he had in even shorter supply than money: respect earned
through demonstrated technical competence. As Rodrigo explained to me
in an interview:

Rodrigo: I noticed that on a free [software] project, there are two curren-
cies of exchange: credit and respect. And there is a tangible good, which
is the source [i.e., source code, says in English]. So, you have two abstract
currencies, and one concrete. I can provide source to the community and
with this earn respect. Or someone can provide me source and I could pay
with credit. [. . .] If I give someone credit, they get respect. And what I am
trying now is to earn respect.

While Rodrigo’s words suggest the possibility of a simple conversion of
code into respect into more code, Rodrigo understood that the free software
community assigned respect primarily to the people who wrote the code,
not to those who organized and funded its production.

Rodrigo thus found himself in a paradoxical situation. “I was in a very
delicate situation,” he explained, “because I had a platform that I had come
up with—the idea of the platform was mine—but that I didn’t know how
to use.” His approach to the project had been to identify the pieces he
needed, find money for them, and then find developers capable of writ-
ing them. While this all required substantial organizational work, from a
technical point of view the pieces just appeared. “I never stopped to look,”
he explained. “I said: ‘I need a LuaExpat!’ And it appeared. Ah, good, now
I have this piece. ‘Now I need a LuaZip!’ It appeared. ‘Now I need MD5.’ It
appeared.”

Based on what Rodrigo had read about open source—for instance, Ray-
mond’s The Cathedral and the Bazaar, which he that he had read back when
it was still an online article and then reread when it came out as a book
(Raymond 1999)—Rodrigo knew that open source projects were supposed
to proceed differently, starting from an individual programmer’s desire to
“scratch a personal itch,” that is, solve a specific problem through actual
programming work. They were not supposed to proceed top-down as a gov-
ernment-funded pursuit of a grand technological vision. Rodrigo’s project,

Dreams of a Culture Farmer 199

as he himself saw it, was proceeding “backward,” having started in the
wrong place.6

Running the project by the local rules did not require Rodrigo to under-
stand the details of the platform that was being built under his leader-
ship. Local participants had accepted Rodrigo’s role as the provider of an
engaging vision and the resources they themselves could not obtain. Such
resources, however, had no power in an international free software com-
munity to be supported by volunteer efforts. Rodrigo had to obtain this
new currency. For this he had to learn to engage in his own project in a
new way: as a developer capable of discussing the minute details of the
code with the members of the list and of making changes to this code when
necessary. The Windows build of Kepler was forcing him to do this work.
In our interview a few months later, Rodrigo described the time as a dif-
ficult but important experience, which involved deconstructing his mental
model of how the project worked and of what his place was in it, then
replacing it with a new one. Yet more important, it involved putting the
new model into practice.

The New Dynamic

I left Rio in early August 2007, but continued to follow the project remotely,
partly out of a researcher’s desire to know what happened later, but also as
a simple matter of commitment. In April I had volunteered to write a wiki
based on Kepler. The wiki became the first public application built on top
of Kepler, and quickly came to be seen as a demo of Kepler’s capabilities and
proof that Kepler could actually be used to build real web applications.7 I
now had a role in the project that could not be easily dropped.

By September, I had started to notice a substantial growth in list traffic.
The list received 236 messages in August and seemed headed for setting
another record in September. I was finding myself barely able to keep up
with the list. I called Rodrigo to catch up on what had happened since my
departure. Rodrigo started the conversation by communicating his excite-
ment over the recent changes. The opening of Kepler was finally bringing
results. The activity on the list was an important part of that: Rodrigo had
also noticed the clear spike in traffic. But it was not just the number of
messages, he stressed, but the changing dynamic. The list members were
no longer just asking questions about Kepler: they were making contribu-
tions, and those contributions tied together Kepler’s global vision and Nas
Nuvens’s local problems.

200 Chapter 8

Rodrigo offered an example of collaboration that illustrated the list’s
new dynamic. Two weeks before our interview, while working on one of
Nas Nuvens’s projects (which were starting to use Kepler), Pedro discovered
a particular problem specific to Windows. He sent a message to the Kepler
list, which went unanswered. After spending some time investigating the
problem on his own and exchanging messages with Tiago, Pedro managed
to identify two potential causes of the problem. He sent a new message
to the list, now much more specific, and two foreign members of the list
joined in the discussion—one of them from Uruguay and another from
Southern California. In the course of a lengthy discussion that involved
Rodrigo, Pedro, Alan, and the two foreign members, the California engineer
proposed using a library developed by Luiz Henrique, one of the authors of
Lua. The library did not work with Windows, which led to an additional
conversation, off the list, with Luiz Henrique. In the end, the California
engineer adapted the library for Windows. Rodrigo and Tiago then jointly
made the necessary changes to Kepler.

This intense collaboration, which brought together Rodrigo, a Nas
Nuvens employee, FINEP-funded Kepler contributors, a member of the Lua
team, and two foreign participants served as an example of the project’s
new dynamic. It helped Nas Nuvens solve a specific problem it faced while
resolving a serious underlying problem in Kepler and improving the qual-
ity of the platform on Windows. The increasing ease of using Kepler on
Windows led to increased growth in interest among local companies. In
particular, João was now talking to local firms and FINEP about the possibil-
ity of bringing Kepler into digital TV projects.

The project was also helped by the arrival of Jason, a Rio developer
we met in chapter 3. In the spring of 2007 I noticed Jason’s name on the
Lua mailing list, as one of a few names that sounded Brazilian yet had
not appeared on my map of the local Lua community built around PUC. I
emailed Jason and discovered that he was working for a local company in
Rio. We scheduled an interview. While a substantial part of the interview
dealt with Jason’s early steps into the software profession, which I described
in chapter 3, we also talked about Jason’s use of Lua. As Jason told me, he
had discovered Lua several years earlier, while working on a computer game
as a hobby project. He had abandoned the project but later remembered
Lua when he faced a problem at work for which it seemed like a perfect
solution. Having used some of the modules maintained by Kepler, Jason
also talked with much interest about this project and his own desire to
participate in something like this. Noticing that Jason seemed to have the
exact combination of expertise and interests that Rodrigo was desperately

Dreams of a Culture Farmer 201

seeking, I asked him if he had thought practically about participating in
Kepler and suggested that he should meet with Rodrigo.

Despite his excitement about the fact that Lua was developed locally,
Jason had never approached any members of the local Lua community
in person. Despite living in the same city, Lua’s authors seemed too far
removed from him.

Jason: So, when I discovered that the guys were at PUC, that I started
using something and the guys were from PUC, I was like: “Damn. This is
there. I think I’ll go there and see what it’s like.” But I wouldn’t even know
were to meet those guys. I think if there were a course they were offering, I
would go immediately, running. But I wouldn’t go and knock on the door
to learn where the guy is.

There was no such course, however, as the Lua team seemed, at the
moment, to have little interest in reaching out to local developers such as
Jason. The authors of Lua’s modules, such as Tiago or Márcio, also seemed
quite distant.

After returning from our interview, I sent Jason an email encouraging
him to talk to Rodrigo. A day later they met for lunch. A few weeks later
Jason was actively involved in Kepler. For Jason, meeting Rodrigo was a
transforming experience. As he told me in a later interview, Rodrigo showed
him that one could live in Brazil doing something outside Java and Micro-
soft’s .Net. While he had always wanted to work on something like this,
Jason explained, he never thought it would be possible, as the bills had to
be paid. “We don’t just live by the economy,” he told me, “but speaking
like modern thinkers, it’s a factor that cannot be ignored. [. . .] I’ve always
wanted to do this, but how would I make a living? If I were to be doing
those highly experimental and advanced things, which do not have . . . are
not commercial in a mainstream way? How would I live outside Java and
.Net?” Rodrigo was a living proof that this was possible. “Well, he is there
and living, right?” said Jason.

Jason’s entry into the project, however, also proved a lifesaver for
Rodrigo. While a number of new subprojects were generating a lot of inter-
est, several others were stagnating, in part due to the fact that Alta’s Fabio
and Fernando were increasingly busy with Alta’s expanding projects and
had less and less time for Kepler. Rodrigo’s reliance on FINEP funding, how-
ever, meant that projects could not be simply dropped for lack of inter-
est. Jason’s adoption of one such lagging project helped Rodrigo focus on
the other projects, the ones he felt were more promising. Another month
later, Jason left his job and came to Nas Nuvens, taking over Rodrigo’s de

202 Chapter 8

facto role as the company’s technical director. This further freed Rodrigo
to focus on Kepler: he was now able to spend as much as 80 percent of his
time working “as a developer.” A month later, Rodrigo managed to dedicate
some of this time to do a side project, for which he wrote half of the code.
This new role was making him more comfortable in his position as a techni-
cal leader of an open source project.

As I was spending my days transforming my field notes into early drafts of
chapters (and spending my nights adding new features to my Kepler-based
wiki software), Rodrigo appeared to have achieved exactly what he aimed
for in March: an assembly of local and global resources that was allowing
him to move ahead with the project while also solving Nas Nuvens’s local
problems. The project was also an increasingly transformative experience
for developers such as Jason, who now had a chance to participate locally
in the construction of a global platform.

The new dynamic continued for several months. At the year’s end,
however, the project found itself without money again. A grant had been
awarded for the new year, but no money had arrived, having disappeared
somewhere in the complicated network of funding transactions. The work,
of course, was expected to proceed on schedule. Over the next many
months Rodrigo had to suspend his newly acquired career as a developer,
dedicating much of his time to the work that he thought he was starting
to put aside: finding out what had happened to the money the project was
owed and what would need to be done to get it back. The team’s morale
was also seriously hurt, as some of the contributors had to go for months
without getting paid for their work. The team managed to release the next
version of Kepler in June 2008, but after that the project was effectively sus-
pended. When I returned to Brazil in December of that year, Rodrigo had
managed to finally get access to the money awarded a year earlier and was
making efforts to bring the project back to life, but a lot of momentum had
been lost and a lot of work had to be redone.

As I was completing my UC Berkeley dissertation in early 2009, I shared
my drafts with Rodrigo and other people I had met in Rio. After reading the
draft, Rodrigo commented that my exposition had shown to him what he
had already suspected: the futility of his project. What he had tried to do
was simply not possible in Brazil, he said. He noted that seeing the phrase
“a decade of his life” in my chapter made it particularly clear to him that
it was time to move on. By the time I submitted my dissertation, Rodrigo
had quit his job at Nas Nuvens and started looking for other projects. Even
before his departure, Nas Nuvens had started a transition from Kepler to
Drupal, a popular open source content management system written in PHP.

Dreams of a Culture Farmer 203

Rodrigo’s departure did not quite spell the end of Kepler. In a way, it
just completed the transition that Rodrigo had started when I arrived in
Rio in March 2007. Even in 2008, while the work on the project slowed
down substantially following the loss of funding, it did not stop entirely.
Rodrigo appeared to have succeeded in convincing the contributors to see
the components they were working on as their own projects, with Kepler’s
serving primarily as an umbrella project helping to coordinate the interac-
tion between the subprojects and attract financial support. Rodrigo’s depar-
ture just finalized this new arrangement. Tiago continues to maintain the
key components of Kepler’s web server. He does so in loose collaboration
with an American programmer who lives in Argentina, and with occasional
contributions from others—for example, a Russian developer working
for a company that uses Kepler in Moscow. Alan’s build script, originally
developed for building Kepler, has grown into a more general solution for
automatic installation of Lua components, which today covers nearly two
hundred libraries and is recognized as one of the main ways of installing
Lua modules. Some of the modules developed by Kepler have been taken
over by Lua developers outside Brazil. The traffic on lua-l suggests that
many of Kepler’s modules remain in use. Most of them can today also be
installed with a single command on Ubuntu Linux, thanks to the efforts of
a developer in Italy. Kepler’s software is also starting to face competition
from alternative solutions for Lua web programming. While such alterna-
tive solutions might point to shortcomings in Kepler’s technical design, in
a way they bring closer to reality Rodrigo’s broader vision of Lua as a plat-
form for web development.

What is missing, perhaps, is any clear sign that Lua is being used much
for web development in Brazil.

* * *
This chapter has looked at a small project that brings into focus the com-
plexity of globalization of modern technical work. Unlike the cases of Alta
and Lua that I discussed in the earlier chapters, Kepler’s case does not easily
allow for simple analysis. It does, however, show the application of many
of the ideas of the framework that I presented in chapter 1.

Kepler’s story highlights the role of imagination that I stressed in many
earlier chapters. The project proceeded from a “crazy” dream—much
like many other dreams that we had encountered before—for example,
Marshall Montenegro’s plan to build airplanes in Brazil. (Montenegro’s
plan, of course, became successful beyond anyone’s imagination: Brazil-
ian airplane maker Embraer, based in São Jose dos Campos, is today one
of Brazil’s largest exporters.) Carrying out this dream required assembling

204 Chapter 8

alliances. Doing so was made easier by the fact that other local parties
were pursuing their own globalization projects, for which Rodrigo’s project
could serve as an ally. Rodrigo’s brother was seeking to build a Silicon Val-
ley–style technology company, and Rodrigo’s project could provide him
with the requisite “local innovation.” FINEP was looking for innovative
approaches to funding innovation, and in particular eager to try its hand
in promoting open source, as some of the foreign governments had done
before. As is common at the periphery, however, the allies must constantly
reevaluate their allegiances, considering whether they would be better off
building direct ties with the larger world. For Nas Nuvens, for example, the
emergence of globally popular platforms such as Drupal posed the question
of whether it was time to cut losses and switch to those new technologies.
For Rodrigo, it meant looking for ways to reduce his dependence on Nas
Nuvens and local developers and figure out how to enroll foreign labor into
his project. This meant finding a way to “relocate” the project from the
offices in Rio de Janeiro into the virtual space created by the global network
of Lua developers and mediated by a technical infrastructure composed of
tools such as mailing lists and wikis. It also meant looking for ways to move
the project away from its financial foundation in Brazil, relying instead on
a system of labor managed through flows of cultural currencies: credit, pres-
tige, and fun. Ironically, this also meant reducing the projects’ dependence
on Rodrigo’s original role in it: the manager or, to use Rodrigo’s term again,
“the PHB.” Rodrigo attempted to adapt his role in the project, becoming a
developer actually writing code. In the end, however, he concluded it made
more sense for him to move on, leaving the code in the hands of younger
programmers like Alan and Tiago.

9 Conclusion

This book has looked at the world of software development from a some-
what unlikely place—Rio de Janeiro, a city widely known for its beaches
and music, but rarely for its software. Looking at software from such a
place, however, provides us with a useful perspective on globalization—
of software, of technical practice, and of skilled work more generally. It
highlights a seeming contradiction in our thinking about globalization:
software development is often described as an immaterial and placeless
line of work, yet it is dominated, both economically and culturally, by a
small number of places. This contradiction appears not only in scholars’
accounts of software work, but in developers’ own accounts. “A server is
a server,” Rio developers say, highlighting the similarity of their work to
that of their California colleagues. Yet, at other times, “this is not Silicon
Valley” comes up as a frequent explanation. This paradox is hardly specific
to Rio or Brazil. After all, despite Silicon Valley’s yet-to-be-challenged pre-
eminence in the world of software, the overwhelming majority of software
developers live in places that can also be aptly described as “not Silicon
Valley.” And even though the domain of software today brings this puzzle
forward in the clearest way, the underlying contradiction is hardly specific
to software.

Understanding this contradiction required looking closely at the work of
Rio developers. It entailed first of all recognizing the many ways in which
place continues to matter in today’s globalizing world even in a suppos-
edly “global” field such as software development. Throughout the book we
have seen numerous examples of how software developers’ work depends
on local networks, local relations of production, local institutions. We have
also seen, however, the many ways in which Rio developers’ work is in fact
quite similar to that of software developers elsewhere, and the many ways
in which they are connected to remote places. Most important, however,
we saw the making of such ties.

206 Chapter 9

I have therefore tried to show not only how being in a “wrong place”
makes software work more difficult, but also how peripheral practitioners
work to overcome such disadvantages—and how their daily (and often
unnoticed) work helps software technology acquire its seeming universal-
ity. In other words, I have attempted to show the importance of recogniz-
ing peripheral participants as neither happily “connected” to their remote
colleagues nor as woefully “disconnected” from them, but rather as actively
working to build connections to remote places and re-create locally a remote
practice. I showed how such attempts sometimes fail and sometimes suc-
ceed. Their success and failure often depends on assembling configurations
of local and remote resources and on the continuous renegotiation of such
configurations. Despite the many difficulties and setbacks experienced by
the peripheral actors, their projects over time bring about an increasing
synchronization between the local and remote contexts, which in turn
facilitates further synchronization of the practice.

This process is arduous and slow. It is far from complete today. It may
in fact never be complete, due to continuous changes in the practice in
remote centers. And, as I also tried to show, peripheral developers’ efforts
often serve to give additional power to remote centers. This process also
often leaves the participants in a paradoxical state of being hyperconnected
in some ways and quite disconnected in others. It sometimes creates seem-
ingly bizarre configurations that involve local participants connecting via
remote centers—as, for example, illustrated by Luciano’s learning English
in order to read a book written by a fellow Portuguese speaker about a pro-
gramming language developed just a few kilometers away. It is this process,
however, that ultimately gives rise to what we call globalization.

Software as a Global World of Practice

To make sense of the seeming contradictions in the experience of Rio’s
software developers, I looked at the system of activities related to software
production as “the world of software”—a case of a world of practice, the idea
developed theoretically in chapter 1. The notion of “a world of practice”
provides an important theoretical counterweight to the idea of “place.”
Armed with this concept, we can look at Rio developers as simultaneously
engaged in two contexts: the local place and the world of software. This
allows us in turn to recognize the existence of a shared global context that
unites software developers around the globe, while at the same time asking
how this global context is created and maintained, and how it relates to
specific places. In what follows I highlight some specific aspects of worlds

Conclusion 207

of practice and the world of software in particular, noting how they were
illustrated in the book.

Culture and Economics
I looked at the world of software as being tied simultaneously by cultural
and economic relations. I tried to show throughout the book that the work
of software developers cannot be understood without considering, on
the one hand, the extent to which it is affected by the culture of software
development, namely, by the shared dispositions and techniques, acquired
through active engagement with communities of practitioners, and the cul-
tural rewards involved in being recognized (and recognizing oneself) as a
legitimate member of the world of software. As we saw throughout the
book, what software developers do is affected strongly by what they see
as “cool,” “fun,” or “elegant” versus what they see as “boring” or “ugly.”
This idea was discussed most explicitly in chapter 3, where I looked at the
developers’ early steps into the world of software, but it was then exempli-
fied repeatedly in subsequent chapters. My discussion of Kepler, Lua, and
even Alta showed the participants’ interest in the cultural rewards provided
by their work.

On the other hand, it would be wrong to ignore the fact that in most
cases software work is done in the context of employment—a politico-eco-
nomic relationship in which the developers offer their labor in exchange
for resources that they can use both for basic sustenance and the acquisi-
tion of objects required to participate in the cultural side of the practice.
(This would include, for example, the acquisition of the latest gadgets, or
using money to hire others to assist in the pursuit of a culturally motivated
technological vision.) The material side of software work was discussed
most explicitly in chapter 5 and at the end of chapter 3, but was exempli-
fied throughout the other chapters as well. Even when it was temporarily
put in the background—for example, in parts of my discussion of Lua—I
tried to remind the reader that such backgrounding of economic concerns
is only possible because of a particular arrangement of labor relations—for
example, the Lua team’s privileged position within the funded academic
research system. I also tried to show that material concerns remain just
as important in open source software development, even as this mode of
software production may put a heavier weight on cultural rather than eco-
nomic means of control over labor.

While cultural and economic perspectives on work are both common,
they are rarely combined. This book shows the need to do so, by dem-
onstrating how neither of the two is sufficient by itself. A purely cultural

208 Chapter 9

perspective (which often seems to dominate, for example, the discussion
of open source software development) would lead us to politico-economic
naiveté and unjustified expectations about the upcoming “flattening” of
the world. (It also can lead us to accepting too quickly the assumptions
of the culture we are studying, as we would have no basis from which to
critique it. This again is common in the literature on open source.) On the
other hand, purely economic approaches to work, and the focus on con-
trol of the labor process, would lead us to put too much stress on formal
organizational systems, such as firms and industries. While such entities do
play an important role, I believe it is important to recognize that knowledge
and innovation in software is often (and increasingly) produced and shared
through lateral ties between individual developers, who are often driven as
much (or more) by cultural motivations as by economic ones.

Combining the two perspectives means, among other things, looking at
how the developers themselves reconcile the cultural and economic sides of
the software practice, a task that is rarely easy. “Why will no one ever pay
you to do anything interesting?” asks a message to the Lua mailing list. The
question is asked in jest—many software developers stress that being paid to
do what is interesting is the biggest appeal of software development as a pro-
fession. (Needless to say, this means doing what software developers find inter-
esting, since the desire to spend long hours “mapping interrupts” is hardly
a universal human trait.) It highlights, however, the frequent challenge of
simultaneously extracting cultural and economic benefits from one’s work. I
tried to show the interaction between such factors in several chapters, from
Jason’s stories in chapter 3 to Rodrigo’s work on Kepler in chapter 8.

Reproduction of Practice in a New Place
My discussion of software development in Rio de Janeiro positions the city
as a peripheral site in a widely dispersed but highly centralized world of
software development practice (chapter 4), which is dominated by a small
number of “meccas.” Local participants orient themselves toward such
meccas in an attempt to draw on their symbolic power and to bring the
local practice closer to the remote standards. At many times during my
fieldwork, I found myself in a privileged position as a visitor “from the
Valley,” often given credit for knowledge that I did not actually have or
recruited to serve as an arbiter of local value.

Understanding the distributed-yet-centralized nature of worlds of prac-
tice requires paying attention to the process by which a system of activi-
ties that originates in one place is later reproduced in other places. The
practice of software development in Brazil must be seen as a partial and

Conclusion 209

ongoing replication of the practice of software development based largely in
the United States. I stress the role of individual participants in this process:
the replication takes place as many individual globalization projects, each
driven by someone’s desire to engage locally in a remote practice, in pur-
suit of either cultural or material rewards. This leads me to highlight the
“diasporic” situation of the peripheral practitioners, who engage simultane-
ously in two cultures: the local mainstream culture and the foreign culture
of the practice, illustrated, for example, by the analysis of developers’ use of
English and Portuguese.

My discussion of the process of reproduction draws on ideas of disembed-
ding and reembedding (Giddens 1991). A practice, understood as a system,
cannot move to a new place all at once. Individual elements of the prac-
tice, however, can be detached from the system (“disembedded”), moved
and inserted (“reembedded”) into a new context. Such mobile elements
may include material objects (the UNIVAC brought to Brazil in 1960 or
today’s mobile gadgets), people (“the Wallauscheks” or even myself), ideas
(“the Smith Plan” imported from the United States, or Rodrigo’s ideas about
open source software developers), documents (the different books read by
Rodrigo and others). As we saw, people attempting to engage in the practice
in a new place must reassemble it from disjointed elements brought from
other places, and such reembedding is often a nontrivial task.

The same applies in reverse: peripheral participants who want to make a
contribution to central practices must thoroughly disembed their innova-
tions, making them mobile. As we saw in the case of Lua and Kepler, such
disembedding does not involve conversion of contextualized elements into
some neutral and context-free medium. Rather, it involves loosening them
from the local context and linking them to the global context of the prac-
tice, which, however, is often local for those in central sites. Knowledge
once shared through Portuguese conversation, for example, takes the form
of a global book, written not in some neutral Esperanto or Volapük, but in
English, the language spoken fluently in California but significantly less so
in Rio de Janeiro. The price of such disembedding is borne not only by the
peripheral innovators who must undertake the work of disembedding, but
also by peripheral users. Luciano’s struggle (in chapter 2) with reading Pro-
gramming in Lua—an English book written in Brazil—is indicative of this.
It also shows how peripheral participants in many ways bear the burden
of maintaining the predominance of central sites. Such disembedding can
also draw new boundaries locally.

Building on the idea of practice as a system, I stress the cumulative nature
of the reproduction process. The process of reproduction of practice across

210 Chapter 9

space happens over time, as a gradual synchronization of context. At each
step, elements are brought together and local work is done to make the con-
text more similar to the central sites, thus laying the “tracks” that Latour
(1987) stresses must be in place for knowledge to move between places.
Alternatively, we can think of such efforts as creating landing strips for
future elements—enclaves of the practice in the midst of otherwise uncon-
quered territory, much like the actual landing strips that Marshall Monte-
negro had to build throughout Brazil as he worked to establish aviation in
the country. Once the tracks and landing strips are there, importing addi-
tional elements becomes easier. Chapter 4 shows us how over a number of
decades Brazil’s context was brought closer to that of the central sites of the
computing world. Establishment of connections to the Internet, for exam-
ple, transformed the methods for keeping practices in sync. The different
projects described in the last four chapters all contribute to the continued
synchronization of context.

Seeing software practice as itself an element of a larger system of prac-
tices has led me to stress the parallel nature of the reproduction process. As we
saw most clearly in chapter 4, the reproduction of the foreign software prac-
tice cannot be understood in isolation from the parallel efforts of people
engaged in other practices, all of them pursuing their own globalization
projects. The fact that the centers of many practices coincide simplifies this
task tremendously. The work of Alta’s engineers, who have mastered tech-
nology developed on the West Coast of the United States, is made much
easier by the fact that their clients seek to emulate business practices origi-
nally developed in the same place. This parallel reproduction, however,
also raises the stakes. The clients’ concerns about the successes of their own
globalization project lead them to seek authentic practitioners of supporting
practices. To the extent that they can afford it, they want software develop-
ers who can provide them with the best of the world’s technology, not just
with local substitutes. This in turn means that the developers are expected
to project a global image in everything they do (both for the clients and for
each other) and highlight their ability to transcend space in their practice.
“A server is a server” thus becomes not just a statement about the state of
the world, but a promise that developers must fulfill.

Reflexivity, Imagination, and Collective Action
The parallel nature of the reproduction process leads to a complex relation
between individual and collective efforts of reproducing foreign practices. The
local practitioners must often make a decision whether to cast their lot
with local colleagues or to focus on their individual connections to remote

Conclusion 211

centers. We saw examples of this both within and between practices. For
example, the Brazilian government and other Brazilian users of computers
had to decide at several points whether to rely on local makes of comput-
ers (in the hope of eventually benefiting from cheaper technology more
attuned to local needs) or to focus on acquisition of the better foreign
machines. Within the practice, software developers in Rio de Janeiro must
decide whether to go with the globally established programming language
such as Java, or to dedicate their efforts to supporting a local one. I use the
cases of Lua and Kepler to show the challenges this presents for local inno-
vation, which must often succeed abroad before being accepted at home.

To understand the unfolding of such collective projects, we must pay
attention to reflexivity. We saw throughout the book that peripheral soft-
ware developers know quite a bit not only about the social context they
inhabit (as do most people, argues Giddens [1979]), but also about the
remote social context of the central places of software production. This
knowledge of a remote social structure becomes an important structuring
tool. Knowledge of how things are done elsewhere can help bring about the
same structure locally. It becomes important to look at the sources of such
knowledge, and in particular at the developers’ use of foreign books and
web sites not just as a source of technical knowledge but also as a source of
ideas for social organization.

Foreign structure, however, is not always deemed relevant to local
activities. While the developers know quite a bit about how things work in
remote places, they also know that Rio de Janeiro is no Silicon Valley. Con-
sequently, they often consider it silly to attempt in Brazil what is known
to work in California. It thus becomes important to pay attention to what
outcomes can be imagined, and how the dubious nature of such imagina-
tion is negotiated in joint projects. Rodrigo’s attempt to draw a distinction
between “crazy” and “insane” dreams in chapter 8 illustrates this point.
Change often comes from plans that are sufficiently “crazy” to present an
ambitious step forward, yet imaginable enough to build a coalition in their
pursuit.

Other Places, Other Practices

This book has relied primarily on an observation of a particular practice
in a particular place. What can this account tell us about other contexts of
work? I start with the question of what this book may tell us about software
work in other places. I then briefly discuss whether it may be useful for
understanding other kinds of work.

212 Chapter 9

While additional research would be needed to examine the extent to
which this perspective would fit the practice of software developers in
other places, I expect that for many places such research would discover
a substantial fit with the general perspective advocated here, if not with
the details. This would particularly be the case for other “semi-peripheral”
sites, places where the software practice has been assembled to a substantial
degree but where continued work must be done to keep it up-to-date with
remote standards.

My discussion of language use, for example, would be quite different
if it were based on observations of software developers in one of the soft-
ware capitals of Southern India. In many parts of India, English is not the
language of software, but simply the language of education. It may again
be somewhat different if written in Russia, where the local language is in a
much stronger position vis-à-vis English than Portuguese is in Brazil, and
where programming languages using non-English keywords have been
developed. In this sense, I believe Brazil represents an intermediate posi-
tion and a case worth understanding.

The notion that becoming a software developer often has more to do
with learning to love the computer than pursuing lucrative employment
would also not hold for India, where economic considerations appear to
be the most important reason for becoming a software developer for many
people. Even so, however, the larger perspective taken in this book may
well apply to understanding software work in India. While Brazilian soft-
ware developers learn to love software early on, but may then struggle to
find “proper” jobs, software developers in India, for whom exceptional
grades in high school often become a ticket to the world’s largest software
companies, will likely have to learn to love software after getting their jobs.
(If they do not, their status in the global software world will likely remain
marginal, as their foreign colleagues would see them as low-cost mercenar-
ies rather than fellow practitioners.) Such differences fit within the broader
perspective presented in this book, though understanding those two dif-
ferent ways of entering the world of software may be a particularly fruitful
direction for a future investigation.

This book has focused on a place separated from the centers of the soft-
ware world by several kinds of distance: the cost of traveling, the differences
of language, national boundaries that limit the movement of both people
and things, differences of government policy, national identity, local and
national culture. While such different kinds of “distances” often coincide,
they do not always do so. Looking at places that present specific combina-

Conclusion 213

tions of those different kinds of distance would help refine the notions of
“place” and “peripherality.”

Another question concerns the extent to which the perspective taken in
this chapter can be applied to other fields of endeavor. One may wonder if
software is unique in the extent to which its practitioners in places such as
Rio de Janeiro engage with the global world of practice, including its global
culture. For many other lines of work, the local communities of practice
may be all that matters to the individual practitioners. This requires a two-
fold answer.

The more abstract aspects of the framework would likely be immediately
applicable to a wide range of professions. Even for practices where indi-
vidual practitioners rarely venture out of their local community, the sub-
stantial degree of similarity in practice points to the existence of processes
that lead to synchronization of those practices between places, which likely
draw on some of the same mechanisms. The perspective taken in this book
would in the very least provide a starting point for analysis. For example,
I have stressed that the global culture of software development provides a
set of “perceptions and judgments,” which include the understanding of
software work as interesting and worth pursuing for the sake of intellectual
stimulation. This particular way of seeing the practice is most certainly not
shared by all other practices. The practitioners of a trade can instead under-
stand their work as a matter of “service,” as a matter of “honest work,” as a
game, or as form of political action. What is likely to be found across many
different practices, however, is the pursuit of a shared understanding of the
activity, whatever that understanding may be—and the ongoing struggle
for a fit between this shared understanding and the material reality.

Software may well be exceptional in the extent to which the use of foreign
documents by individual practitioners is important for the synchronization
of the practice. Software is unique today in the abundance and accessibil-
ity of documents describing the practice. It is also unique in the extent to
which such documents are useful. This likely has to do with the relative
immateriality of the software practice. Traditional accounts of science prac-
tices, for example, commonly stress the importance of direct access to the
material tools and artifacts (e.g., Collins 1974, 2001). Software developers,
on the other hand, work with few physical objects apart from their comput-
ers. Their work is a disembodied, textual art. Repositories of software code
and mailing lists (on which code can be shared by simply being pasted into
the message) serve as virtual environments in which the objects of work
reside and can be observed. Such repositories can be “visited” at little cost,
as such visits do not disturb the work that occurs in them.

214 Chapter 9

While there is no equivalent of this for many professions, software rep-
resents an example of a class of occupations that primarily involve manipu-
lation of digital representations. Software developers simultaneously help
create the technologies that enable work based on digital representations
and become pioneers of such work. I expect that the number of such occu-
pations will grow over time, and new technologies will make it possible
to increasingly interleave such representations with texts. The reliance on
such shareable representations may also lead to increased free sharing of
elements of different practices, enabling non-software equivalents of open
source production. As the analysis presented in my work suggests, however,
this does not mean that place would cease to matter and may instead add
power to the central sites.

What’s Next for Rio’s Software Developers?

As I mentioned at the end of the previous chapter, Rodrigo found in my
narrative a pessimistic moral. The book had shown him, he told me, that
what he wanted to do was simply not possible in Brazil and that following
Alta’s strategy of focusing on providing local solutions would have been
wiser. Lua was perhaps an outlier, made possible by its team’s privileged
position at PUC and in the networks of global computer science. And as
I noted in my story about Lua, its success was partly predicated on a suc-
cessful separation from the local context, which could make one wonder
of what use Lua can be to the place where it was born. My other stories are
also full of examples of broken local alliances, as the parties made choices
to build direct links with remote actors.

While my story has stressed the many difficulties of reproducing prac-
tice at the periphery and especially of peripheral innovation (which, in
many ways, represents the most central form of the practice, in Lave and
Wenger’s terms), this focus on challenges is counterbalanced by the atten-
tion to the cumulative nature of the reproduction process. Rodrigo’s project
attempted to build on the Lua team’s earlier success in developing an inno-
vative programming language and, at the same time, on the broader success
of the practice of software use in Brazil. The difficulty of the path pursued
by Rodrigo stands out in part due to the seeming ease of the strategy pur-
sued by Alta, which focused on building more incrementally on the already
established practice. The success of Lua’s team was of course enabled by the
work done by the earlier generations who worked to establish the practices
of computing in Brazil in the 1960s and the 1970s. Their work in turn built

Conclusion 215

on what was done yet earlier—for example, the establishment of ITA as a
part of Marshall Montenegro’s plan to bring airplane making to Brazil.

I do not believe software work is likely to become fully placeless. The
world of software will probably continue to be organized around a set of
“meccas.” Absent the collapse of the United States envisioned by Rio nerds
in chapter 2, Silicon Valley is likely to remain one of those meccas for years
to come. And when it is eventually eclipsed by a new center, it is unlikely
that this center will be Rio de Janeiro—after all, there will be many other
contenders. At the same time, however, the work of many people—those
working in the decades past and those working today—helps establish the
practice of software in peripheral places, giving it a seeming degree of place-
lessness. It has done this by increasingly establishing compatibility between
the global practice and the local context, carefully adapting the elements
until they start to fit together, laying tracks upon which knowledge could
travel around the world with seeming ease.

Rodrigo’s own work is perhaps also best evaluated by looking at it his-
torically, as yet another attempt to adapt the local context for the increas-
ingly more central forms of the global software practice. We must look at
the local practice that the project has fostered, rather than just at its mate-
rial outcomes. Jason’s discussion in chapter 8 of the way Kepler had affected
him exemplifies this view of Kepler. “I met Rodrigo,” Jason told me, “who
is a person who showed me that it’s possible to work like this. [. . .] He is
there and living, right?” Web development based on Lua is yet to become
widespread (and when it does, it may well happen on software written by
others) and the specific configuration of resources brought together by
Rodrigo has largely dissolved. I believe, however, that the effect of his work
can be seen in the ways in which people who were once involved with the
project find their new places in the global world of software, in their own
increased ability to combine local and global resources in pursuit of their
global dreams.

Notes

0 The Wrong Place

1. I use the term “software developers” to refer to people who create software and

whose role in its creation requires some understanding of the inner working of this

software. I also use an alternative term “programmer.” I use both terms inclusively,

even though within the software community a number of terms would be used

depending on the situation. In general, in the United States today “programmer” is

an outsider term, rarely used by the software developers themselves, who often

prefer such terms as “developer” or “coder.” The Portuguese cognate “programador”

is used even less often by software developers in Rio where it is seen as connoting a

low position in the organization. Other terms might vary from more specific job

titles (e.g., “software engineer,” “software architect,” “systems analyst”) to looser

terms such as “hacker” or “software guy.” Most of those terms have Portuguese

equivalents, though as is the case with “programmer” the connotation sometimes

varies between the two languages.

2. The San Francisco Bay Area likely accounts for between 1 and 5 percent of the

world’s software developers.

3. The term “worlds” also links “worlds of practice” with “social worlds,” which I

discuss in the next chapter.

4. When dating the beginning of free / open source software development, it is

important to note that the distinction between free and proprietary software is only

meaningful in the context of a particular intellectual property regime, which took

its current form in the early 1980s (see Schwarz and Takhteyev 2010).

5. See Levy’s (2001) account of the formation of the “hacking” culture at MIT. Also

see Turner (2006) on how California’s counterculture movement merged with Cali-

fornia’s computing culture.

6. In the course of my work, I found Weiss (1994) an invaluable resource on the

interviewing process, Emerson, Fretz, and Shaw (1995) helped me with writing field

218 Notes

notes, while Becker (1998) taught me to think about the overall direction of my

research.

7. Such reflexivity forms the foundation of what Burawoy (1998) calls “reflexive

science.”

8. I see this methodological observation as extending Giddens’s (1979) argument

that the actors know a good deal about the conditions of social reproduction. This is

especially true when the “actors” in question are highly educated professionals. I

borrow the term “ethnomethods” here from ethnomethodology (e.g., Garfinkel

1967), but I mean it the broader sense of social science—like “methods” used by the

actors themselves.

9. I was particularly influenced by Marques’s (2005) observation about the ambiva-

lence inherent in the position of the peripheral practitioners, who inhabit a “con-

tact zone” and find themselves “simultaneously copying and rejecting the models

they imitate” (150). While Marques notes the resulting “impasse,” however, my

analysis focuses on the dynamism in “the contact zone” inhabited by the Brazilian

software professionals.

10. A web development platform is a collection of software modules that serves as a

foundation for building interactive web sites. Such modules normally take care of

routine functionality allowing the developers to focus just on implementing fea-

tures specific to their site.

11. Latour and Woolgar (1986) provide, in jest, a description of what social scien-

tists would have to do to their subjects if they were to aim for the same degree of

rigor as the biologists in the lab that they study, which includes not only full moni-

toring of communication but also “the right to chop off participants heads when

internal examination was necessary” (256).

12. In this way, my work combined elements of traditional (though multisited) in

situ ethnography with what could be seen as a case of “virtual” ethnography, draw-

ing on many online interactions. In this sense, my fieldwork had nontrivial similari-

ties, for example, to Nardi’s (2010) study of World of Warcraft. If the “virtual”

elements of ethnography are not always fully apparent in my presentation, this is

because the virtual spaces in which developers collaborate with each other are nor-

mally understood by the participants as being fundamentally a part of the same

reality as their face-to-face interactions. The meaning of “Rodrigo and I discussed

the problem and found a solution” is understood to not depend on whether the

interaction happened online or in “RL” (real life), since our identities persist between

face-to-face and online interactions. (This is in contrast with World of Warcraft,

where Nardi becomes “Innikka,” the Night Elf when she enters the virtual world of

the game.) In my presentation I try to alternate between deliberately resisting this

transparency of the medium by highlighting the circumstances of the different

interactions (e.g., pointing out whether they occur on beanbags or on the mailing

Notes 219

list), and at other times giving in to it, using phrasing that leaves the medium

unspecified.

13. During my time in Brazil in 2005, I kept a journal but did not make it very

detailed, because I saw my interview as my primary data. I came to regret this as I

worked with my interviews in 2006 and found a need to place them in the context

of my own evolving project. Consequently, when I returned to Brazil in 2007, I put

a much stronger emphasis on field notes, setting myself a goal of writing around a

thousand words a day and describing the events of each day in substantial detail.

What I found is that this not only helped me record such events for later use but

also helped focus my attention on the process of observation.

1 Global Worlds of Practice

1. An early version of this critique is provided by Contu and Willmott (2003, 2006),

who laid much of the blame on Lave and Wenger themselves. Duguid (2008) pro-

vides a later analysis.

2. Unfortunately, Strauss (1979) applies the term “site” both to physical places

(“mountains to climb, sites to fish,” 3) and to niches in the more abstract “spaces”

of activity (“sections of the sky [. . .] to examine for subspecialty purposes in astron-

omy,” ibid.). See also Unruh’s (1980) brief discussion of “geographical center(s)” of

social worlds.

3. Levine’s work precedes Strauss’s and uses the term “worlds” more loosely.

4. Strauss warns against seeing worlds as actors, yet the primacy of individual

agency is not explored in details and he frequently employs language that suggests

that the worlds do act. I try to avoid this and introduce a more detailed discussion of

agency and its relation to social structure later in this chapter. (My analysis can be

seen as an attempt to reconcile Becker’s microlevel approach to social worlds with

Strauss’s higher-level discussion.)

5. In this broader sense, Greek praxis could refer to nearly any human activity short

of hard manual labor (Lobkowicz 1967).

6. The term “practice” is sometimes associated more closely with the work of

Bourdieu (1977), who specifically identifies his approach as “theory of practice.”

Giddens (1979, 1984), on the other hand, refers to his theory as “theory of structura-

tion.” The notion of “practice,” however, is quite central to Giddens’s (1979) work

and his use of the term is quite similar to Bourdieu’s. Despite certain differences

between the two approaches, their similarity is widely accepted and the two

approaches are often jointly referred to as “practice theory.” (Giddens 1984, which

further develops the theory of structuration, no longer uses the term “practice,”

while also taking, in my view, somewhat of a more “micro” approach than Giddens

1979. My own work draws more closely on Giddens 1979.)

220 Notes

7. Giddens (1979) himself uses the term “rules.” As Sewell (1992) points out, how-

ever, Giddens’s use of the term “rule” is ambiguous and easily misunderstood: Gid-

dens uses the word in its Wittgensteinian sense of “knowledge of how to proceed,”

not in the vernacular sense of “formal rules.” From this perspective, “rules” in the

everyday sense (e.g., “Employees must be at work by 9:00 a.m.”) are not “rules” but

“resources” in the theory of structuration.

8. While recognizing this parallel is important and fruitful, my use of the term

“schema” should not be seen as a blanket endorsement of a cognitivist perspective.

Attempts to analyze the internal nature of schemas can easily lead to a mechanistic

view of human cognition, a road that I try to avoid. At the same time, the concept of

“schema” allows us to work with units that are somewhat smaller than “culture,”

avoiding the temptation of imagining culture as indivisible.

9. The first three of those possibilities are analyzed by Sewell (1992). The last one is

from Giddens 1979.

10. A similar type of structuration is discussed by Meyer et al. (1997), who look at

the ways in which nation-states reproduce foreign models, using the term “expan-

sive structuration” (156). (In my reading, though, the term “expansive” is used here

to describe the resulting expansion of the state, rather than the expansion of the

model.)

11. See also Adler 1987.

12. See, for comparison, Van Maanen and Barley’s (1984) discussion of “occupa-

tional communities.” In my reading of the article, Van Maanen and Barley focus

primarily on the first kind of “communities” that I mention, while acknowledging

the second kind. They strive to specifically move away from the broader kinds of

“communities” that I discuss next.

13. This is the main reason why we should not attempt to understand them as

“networks”—a term that aims to put the group in the shadow to focus on the indi-

vidual ties.

14. See also Lamont and Molnár 2002 on the distinction between “symbolic” and

“social” boundaries.

15. A similar approach is used by Becker (1953), on whose conceptualization I draw

in chapter 3.

16. Note that Lave and Wenger (1991) use the terms “central” and “peripheral” in a

nongeographic sense. “Central” forms of participation are those most significant to

the community and that mark the fullest degree of membership. As I try to show,

though, such central forms of participation are quite often associated with the geo-

graphic “centers” of practice.

17. My approach here attempts to bridge two traditions in sociology of work. The

“cultural” approach, represented by Hughes and in a more extreme form by Becker,

Notes 221

stresses occupational groups as groups driven by identity. This approach, popular

before the 1970s, was later criticized for politico-economic naiveté, most famously

by Braverman (1974). Much of later sociology of work has, in a way, followed

Braverman. While his specific pronouncements have been largely rejected (e.g.,

Form 1987), the literature has generally stayed focused on understanding work as a

matter of labor transaction, asking how workers sell their labor, how they are con-

trolled, and how they resist the control. The cultural approach has more recently

resurfaced in literature discussing high-tech practices, especially outside sociology

(e.g., Kelty 2008). Other authors who have attempted to explicitly integrate the two

perspectives and have influenced my thinking on the topic included Willis (1981),

Burawoy (1979), Van Maanen and Barley (1984), and Lamont (2000).

18. My notion of “moves” here is similar to the discussion of jurisdiction-shifting

“moves” by professions in Abbott 1988, though I have in mind a somewhat broader

range of “moves,” which would include both collective and individual attempts to

shift (or solidify) positions. Claiming a new mandate (perhaps by arguing that the

group’s culture and technique are uniquely fit for a particular role in the larger divi-

sion of labor) is just one kind of move. Other examples would involve individuals

aiming to use their de facto fulfillment of a role to acquire the culture and technique

necessary for continued membership or, alternatively, individuals making an argu-

ment that their possession of a technique justifies creating a corresponding role in

the local division of labor. I illustrate some of those moves in chapter 4.

19. Ironically, the rise of modern ICTs has dramatically helped this remote control

of work. A few decades ago a manager based in the San Francisco Bay Area would

have a hard time directly controlling work in India, Ireland, or Russia. Today they

can. (See, e.g., Ó Riain 2000 and Aneesh 2006.)

20. I borrow the terms “center” and “periphery” from the world systems literature

(e.g., Wallerstein 1974). To follow Cardoso (1972) and Evans (1979), it would be

appropriate to use the term “semi-periphery” to refer to the sites that I focus on,

contrasting them with the true periphery, where the practice is yet to be fully estab-

lished. I stick with the term “periphery” for simplicity. It is worth noting that the

term “peripheral” is also used by Lave and Wenger (1991), but of course in a very

different sense: Lave and Wenger’s “peripheral” participants are typically situated in

the same place as the central practitioners, while practitioners working in “periph-

eral” sites are not necessarily novices. The two senses of the term, however, are

related. Both kinds of “peripheral” participants engage in a practice over which they

have less control than the more “central” members. Further, one can draw certain

parallels between Evan’s (1979) “dependent development” and Lave and Wenger’s

“legitimate peripheral participation,” since in both cases a peripheral position is

presented as potentially a step toward more central membership.

21. This additional value is an “externality” in that it is enjoyed by parties who do

not participate in the adoption decision.

222 Notes

22. See Marshall’s ([1890] 1927) classic analysis of the causes of industry

localization.

23. In this sense, the economic notion of “network externalities” fits somewhat

better with my overall framework than does Grewal’s (2009) notion of “network

power.” Java and the English language are resources and as such can be a source of

power for agents who can use them. Wide use of such resources makes them more

powerful, not in the sense that such resources acquire their own agency but rather

in the sense that such use further increases the power of agents who employ such

resources at the expense of those who do not.

2 The Global Tongue

1. The quotation fixes two typos contained in the original code—one in an English

word and another one in a Portuguese word.

2. My use of the term follows Grosjean’s (1982). For the original usage, see Ferguson

1971.

3. Some scholars do make a claim that Brazil is diglossic between two varieties of

Portuguese (e.g., Azevedo 1989; Bagno 2001).

4. To the extent that this is true for many developers but not for all of them, the

result is often a “language barrier” within the local community of the kind that I

describe later.

5. Those are the twenty-six letters that were included in the 7-bit version of ASCII

(the American Standard Code for Information Interchange) in the 1960s.

6. As a global programming language, Java is designed with an assumption that the

users of the software written in Java may use a variety of scripts, calendars, or sorting

conventions. The programmers, however, are expected to use English.

7. I use the terms “middle-class,” “lower-middle-class,” and “upper-middle-class” as

they are used by my interviewees. Roughly, lower-middle-class families are those

families that can keep their kids in school through the end of high school but

cannot pay for their college education or support them after high school. Occupa-

tions that are described as “lower-middle-class” usually require substantial training

but offer less pay than “middle-class” occupations. “Public school teacher” is one of

the most commonly cited examples of a “lower-middle-class” occupation among my

interviewees. Middle-class families can support their children through college,

though they cannot pay for expensive private schools like PUC.

8. A few months later, when Rodrigo set up a Portuguese mailing list for Kepler, I

learned firsthand the terror of writing in a foreign language to a mailing list that

archives all messages and puts them permanently in public view.

Notes 223

9. As I later learned, Luciano wrote most of this message by himself, and Rodrigo

only corrected a few small mistakes. It also was not Luciano’s first message to the

list—he had sent two short messages before.

10. The result of this compilation can be found in appendix E in Takhteyev 2009.

3 Nerds from the Baixada and Other Places

1. For a somewhat different take on engineers’ “love” of their work, see Kunda 1992.

2. Becker develops those ideas in the context of his analysis of “deviance” and in

particular of marijuana use (Becker 1953, 1963). The framework, however, is appli-

cable more broadly. See Takhteyev 2009 for further analysis of Becker’s framework.

3. Linus Torvalds, the author of Linux, offers an eloquent explanation of what

makes programming fun in chapter 5 of his book Just for Fun (Torvalds 2001).

4. See Petersen 1994 on the history of WordPerfect.

5. The situation has changed somewhat in recent years with the introduction of

quotas for students from public schools.

6. “R$” is an abbreviation for the Brazilian real (reais in plural), Brazil’s currency

since the mid-1990s. Over the years the exchange rate between the US dollar and

the real varied between one and four reais per dollar, with a 2:1 ratio in 2007. One of

course must consider that salaries (and some of the prices) are substantially lower in

Brazil than in the United States, so direct conversion of reais into dollars can be

misleading. In 2007 the minimum monthly wage in Brazil was R$380. Monthly sala-

ries for software developers were usually quoted around R$2,000, with R$3,000 to

R$5,000 being common for “good” ones.

4 Software Brasileiro

1. Ivan da Costa Marques appears in this book in two different (though intertwined)

roles. On the one hand, he was one of the key actors in the history of Brazilian

informatics—a role highlighted in this chapter. In his later years, however, he

turned his attention to science and technology studies, becoming not only an

important source on the history of Brazilian computing, but also an important

thinker on the broader issue of peripheral technology. My first encounter with

Marques was through his papers, which had a substantial influence on my own

thinking about Brazilian technology (see note 9 in chapter 0). Later, however, I

interviewed Ivan in much the same format as my other interviewees. In cases where

I do not cite specific sources, my discussion of Ivan’s role is based on those

interviews.

224 Notes

2. Cf. Latour’s (1988) argument that Pasteur’s bacteriology became successful on

farms because farms became in essence transformed into laboratories.

3. Computing firing tables was only one of the computationally intensive tasks

faced by the World War II armies. Another important one was the encryption and

decryption of radio communication.

4. See Grier 1996 on the emergence of the term “program” in its contemporary

meaning.

5. See Ensmenger 2010 on the development of the idea of programming as a male

occupation—in particular, in relation to the testing methods used to select program-

mers in the 1960s. Note though, that while programming was predominantly done

by men already in the 1950s, it did not become so nearly exclusively the male profes-

sion it is today until the 1990s.

6. Campbell-Kelly (2004, 38) reports that the RAND Corporation estimated in 1955

that there were around two hundred programmers capable of the most sophisticated

development work, but probably six times as many other programmers working on

simpler applications.

7. This is a very rough estimate. While most countries collect occupational statistics

at a level of granularity that could be sufficient for an estimate, different countries

use rather different classification systems. Consequently, aggregating the counts

between different countries is difficult and is usually done only at the level of broad

division by “skill level.” (That is, software developers would just be counted as “pro-

fessionals.”) Numbers for software industry employment are easier to come by, but

they provide fundamentally different counts: the software industry employs people

in different occupations (e.g., accountants) and many software developers are

employed by companies that fall into other sectors (e.g., banks). Additionally, sec-

toral statistics for developing countries that appear in print are frequently based on

numbers provided by industry associations with little explanation as to how they

were obtained. US government statistics for 2000 and 2006 suggested that there

were likely around three million people working as “computer professionals” in the

United States. I estimate that around 70 percent of them are “software developers.”

Brazilian statistics for the same years pointed to around 150,000 computer profes-

sionals in that country. Combined with other available statistics, this leads me to

roughly estimate that the total number for the world approaches around ten mil-

lion. For additional details on numbers, see appendices F and G in Takhteyev 2009.

8. See Takhteyev 2009 for several additional maps.

9. The US estimate is based on the 2000 US Census and 2006 Bureau of Labor Statis-

tics Data. Brazilian numbers are based on the 2000 census and RAIS 2006, an occu-

pational survey. For both countries the 2000 census gives a somewhat higher count

than the 2006 occupational survey. See appendix F in Takhteyev 2009 for details,

including a discussion of how “computer professionals” are counted in each coun-

try’s statistics.

Notes 225

10. The numbers used in this section were collected in May 2008. Due to the subse-

quent fluctuations in the stock market, I decided not to redo the counts and used

the numbers for 2008. See appendix H in Takhteyev 2009 for details, including the

question of whether this number represents a fraction of the world’s or just the US

industry capital markets.

11. So much so that software developers occasionally refer to Microsoft by the name

of the city where it is headquartered—“Redmond.” Microsoft and other large com-

panies based in the United States of course employ a substantial number of develop-

ers outside those regions. The work of such developers, however, is often focused on

peripheral tasks, including what some of my interviewees call “tropicalization”—the

adaptation of global software for the idiosyncrasies of the local context. To the

extent that they focus on work central to the companies’ products (as is sometimes

the case for software developers working for major US companies in places like Ban-

galore), their work is directed from abroad. See Ó Riain (2000) for an example.

12. Other metrics offer a somewhat more complex though not altogether different

picture. For example, see the list of companies that have contributed most changes

to Linux 2.6.20 in Kroah-Hartman, Corbet, and McPherson 2009. It is important to

note again that companies headquartered in the San Francisco Bay Area, the

Research Triangle of North Carolina, and New York do hire developers in other

places. In case of Linux in particular, the contributors include a number of develop-

ers working in Brazil. See also Takhteyev and Hilts 2010 for an investigation of the

geography of open source software based on an analysis of Github.

13. It is important to note that while software platforms are predominantly devel-

oped in a small number of places, people who lead their development often come to

those places from far away. In open source, the most notable examples include

Linus Torvalds (the author of Linux, from Finland, now in Oregon), Guido van

Rossum (the author of Python, from the Netherlands, now working for Google in

Silicon Valley), and Rasmus Lerdorf (the author of PHP, from Greenland, now in Sili-

con Valley). Such migration toward the center has often been seen negatively, as

aiding the central countries at the expense of the peripheral ones (e.g., Dedijer 1961;

Johnson 1965). While the benefits that such migration has brought to the central

sites seem clear, the peripheral locations may have gained from it as well in some

cases. For example, Saxenian (1999, 2006) argued that the migration of engineers

from Taiwan and India has helped the development of high-technology industries

in such countries.

14. Marshall’s ([1890] 1927) explanation of industry clustering applies remarkably

well to the modern world. For a more up-to-date discussion, however, see the litera-

ture on industry clusters (e.g., Saxenian 1996; Powell et al. 2002), or the economic

literature on spillover effects (e.g., Audretsch and Feldman 1996).

15. The story presented here is based primarily on existing literature, augmented

with a small number of interviews with people who have worked with computers in

226 Notes

Brazil in the 1960s and the 1970s. I rely on the best available sources, including sev-

eral works by journalists (Dantas 1988; Morais 2006), memoirs (Staa 2003), and the

work of institutional historians (Freire 1993; Senra 2007).

16. Though it was IBM that suggested purchasing a computer, the company lost the

bid because it could not promise to deliver a machine on the desired short

schedule.

17. The next census did rely heavily on PUC participation. It should also be noted,

though, its success is often also attributed in part to the more substantial assistance

of USAID, which sent consultants who stayed at IBGE for months helping install

and program the new equipment.

18. B205 numbers are quoted from Staa 2003. The UNIVAC price and memory are

quoted from Senra 2007, while weight and energy consumption are from Weik

1961.

19. Faculty CVs are available at http://lattes.cnpq.br/.

20. This was originally pointed out to me by Sidney de Castro Oliveira who was, at

the time, planning to write his doctoral dissertation on this idea.

21. According to Schoonmaker (2002), one of her interviewees, a former president

of a major Brazilian computer company, described the skilled labor resources as

“‘eggs’ left behind by ‘the serpent of the market reserve’” (128).

22. According to Carvalho (2006, 96), Internet access was delayed in Brazil due to a

strong commitment to OSI—a networking protocol that had been accepted by the

International Standards Organization but was being supplanted by TCP/IP, the pro-

tocol used by the Internet without any official standardization process.

23. In the rest of the interview, the interviewee stresses that talking to other local

practitioners continues to be important but now takes a different form—that of

sharing “hints” about what to look up on the Internet. See my discussion of “point-

ers” in the next chapter.

24. See Marques 2007 on the negotiations surrounding Brazil’s copyright laws in

the 1980s.

25. For example, Linux drives popular web sites such as Google, Facebook, Wikipe-

dia, and Yahoo! It also forms the base layer of the Android operating system for

smartphones. (Apple’s OSX and iOS are based on BSD, another open source operat-

ing system.)

5 Downtown Professionals

1. For a brief discussion of the Genesis incubator, see Didier, Weber, and Pimenta-

Bueno 2005.

Notes 227

2. There is a popular Brazilian joke about an angel watching God in the process of

the Creation who asks why each country is being endowed with its share of natural

disasters, except for Brazil, which seems to suffer from neither blizzards nor hurri-

canes nor earthquakes. To this the Almighty responds: “Just wait till you see the

people that I will put in that land.” The joke is so well-known in Brazil that it is

often shortened to “Just wait till you see the people!”

6 Porting Lua

1. For instance, Lua was ranked between fifteenth and twentieth in the TIOBE TPCI

index for most of 2007 and 2008, dipping to the twenty-second position in Decem-

ber 2008, then rising to the twelfth position in 2011. (The index measures the popu-

larity of programming languages by using search results.)

2. TIOBE declared C “the programming language of the year” for 2008, acknowledg-

ing the fact that C has grown in popularity in 2008, despite being one of the oldest

languages in TIOBE’s top twenty.

3. At the time and throughout the 1990s, Tecgraf spelled its name as “TeCGraf,”

highlighting the fact that the name was an acronym for “Tecnologia em Computa-

ção Gráfica” (computer graphics technology). The transition from “TeCGraf” to

“Tecgraf” happened sometime between 2001 and 2003. In this chapter, I use the

new spelling throughout.

4. The earliest available implementation of Lua (from July 28, 1993) contains a

small number of comments in Portuguese but is otherwise written in English. DEL

implementation consists of twenty-three files, twenty of which are strictly in Eng-

lish, including all eighteen files attributed to Luiz Henrique de Figueiredo. The other

three files use a mixture of English and Portuguese for both variable names and

comments. SOL implementation had minimal comments, a total of fifty-five words.

All of those comments were in English, however.

5. Antônio’s “many eyes” refers to Eric Raymond’s (1999) pronouncement that

“given enough eyeballs, all bugs are shallow”—that is, the idea that exposing the

source code to other developers helps discover and fix its defects.

6. Ierusalimschy, Figueiredo, and Celes 2007.

7. The manual distributed with Lua 1.1 contains a link to “ftp.icad.puc-rio.br:/pub/

lua/lua_1.0.tar.Z,” which presumably represented a distribution of “Lua 1.0.” The

link is currently dead and it appears that its inclusion in the manual for Lua 1.1 was

a mistake. A snapshot of a pre-1.1 version of Lua was later released in 2004 as “Lua

1.0” to commemorate Lua’s ten-year anniversary.

8. Ten years later, Lua 5.0 (Ierusalimschy, Figueiredo, and Celes 2007) became the

first scripting language to use a register-based virtual machine, which brought Lua

228 Notes

substantial academic interest. Additionally, in recent years, Roberto Ierusalimschy

and his students have used Lua as a base for experimental work in programming

language research.

9. DEL was similarly described in a Tecgraf technical report (Figueiredo 1992) and a

paper presented at a conference in Brazil (Figueiredo et al. 1992).

10. The 1993 presentation was entitled “LUA: uma linguagem para customização de

aplicações” (LUA: a language for customizing applications).

11. http://compilers.iecc.com/comparch/article/94-07-051.

12. Ierusalimschy, Figueiredo, and Celes (2007) describe this license as a naïve “col-

lage and rewording of existing licenses.” While the authors say that they do not

remember from what sources they borrowed the text of the license, the first part of

the Lua 2.1 license is identical to the license of Tcl 7.3 (released in 1993), while the

rest generally corresponds to the X11 license.

13. Each of the three members of the team spent some time abroad (in different

places) between 1995 and 1997, though this fact did not come up in any of my

interviews. While their separation had roughly preceded the setup of the mailing

list, the list did not become the locus of Lua development, even to the limited extent

as that which happened with Kepler’s list after Alan’s departure (see chapter 8).

14. See Ierusalimschy, Figueiredo, and Celes 2007 for the text of the message.

15. A message to lua-l, May 10, 2011, available at http://lua-users.org/lists/lua-

l/2001-05/msg00149.html.

16. Ironically, but not surprisingly, Roberto Ierusalimschy was one of the few people

willing to talk extensively and on record about this conflict. Most people who were

there at the time either asked to not be quoted or (more often) downplayed the

complaints.

17. The discussion on the Lua list in the months leading to Lua 4.0 shows that the

authors and the users were not entirely indifferent to backward compatibility, and

in fact saw it as quite important. Some members also disagreed with the specific

changes introduced by the new version. In the end, however, the desire to make

improvement won over the concerns about backward compatibility and Lua 4.0 was

received by the list with much enthusiasm.

18. In recent years, Lua has also received a number of research fellowships from

Microsoft. So far, though, those have not been a major component of Lua’s funding.

7 Fast and Patriotic

1. The government agency is called CAPES (a Portuguese abbreviation for “Coordi-

nation for Improvement of Higher Education Personnel”) and the ranking system is

known as “Qualis.”

Notes 229

2. A message to python-brasil, February 2007 (my translation).

3. Though many of the people I have talked to alluded to the association between

nationalism and lack of education, the author of the “fast and patriotic” comment

was at the time pursuing a PhD in one of Brazil’s best computer science depart-

ments. (The comment of course may have been sarcastic.)

4. Roberto was referring to our discussion of my interview with Craig, quoted earlier

in this chapter.

5. As with other open source projects, the only real property involved is the trade-

mark for the name “Lua.” Others can release a modified version of Lua, but they

would have to call it something else. (The Lua trademark belongs to PUC.)

6. My translation of the Portuguese text of the message. Luiz Henrique’s own Eng-

lish translation, included in the same message, read: “Another important goal is to

help spread the word about Lua to the local community and industry.”

8 Dreams of a Culture Farmer

1. Lua of course was also partially funded by the Brazilian government and PUC,

itself an actor tied closely to the local context. In Lua’s case, however, the funding

system appears to have stabilized a while back, now forming a part of the infrastruc-

ture that is almost invisible to the actors. By contrast, Kepler’s alliances with the fund-

ing agencies were new and highly problematic, requiring constant renegotiation.

2. PUC earlier had an undergraduate program in “informática,” but Rodrigo found

it outdated.

3. See Hester, Borges, and Ierusalimschy 1997 for a discussion of CGILua in com-

parison to a number of the better-known alternatives. The paper does not, however,

compare CGILua to PHP—a system that had been available since 1995 but was rela-

tively unknown at the time. PHP was very similar to CGILua in a number of ways

and came to dominate web development a few years later.

4. Observing the lack of collaborative relationships between industry and local

research and unwilling to wait for companies to start building such relationships on

their own initiative, the Brazilian government requires companies to contribute

money to “sectoral funds” that are then used to fund collaborative projects such as

the one described in this chapter (though typically the funding occurs on a much

larger scale, according to my conversation with a FINEP grant officer). The distribu-

tion of those grants is managed by FINEP. In addition to FINEP’s sectoral funds,

Kepler has relied on money from other agencies, such as CNPq (an agency responsi-

ble for funding academic research) and funding agencies of the State of Rio de

Janeiro. I avoid a discussion of the complex web of funding relationships, as such a

description would require a tome of its own, focusing instead on FINEP, the major

source of funding.

230 Notes

5. Favret-Saada cites the influence of Octave Mannoni on her analysis.

6. Some projects do start by scratching an itch in Rio—many if not most of my

interviewees have pursued one at some point. Such projects rarely go very far, how-

ever, for lack of time and inability to find others willing to participate. It is also

worth noting that many open source projects do proceed from the top down as

funded projects. This was not the model described in the books Rodrigo was reading

at the time, however.

7. My wiki was not the first web application built on top of Kepler, but it appeared

to be the first that a member of the general public could easily see live and obtain

the code for.

References

Abbott, A. 1988. The System of Professions: An Essay on the Division of Expert Labor.

Chicago: The University of Chicago Press.

Adler, E. 1986. Ideological guerrillas and the quest for technological autonomy: Bra-

zil’s domestic computer industry. International Organization 40 (3): 673–705.

Adler, E. 1987. The Power of Ideology: The Quest for Technological Autonomy in Argen-

tina and Brazil. Berkeley: University of California Press.

Anderson, B. 1991. Imagined Communities: Reflections on the Origin and Spread of

Nationalism. Revised ed. London: Verso.

Aneesh, A. 2006. Virtual Migration: The Programming of Globalization. Durham, NC:

Duke University Press.

Appadurai, A. 1996. Modernity at Large: Cultural Dimensions of Globalization. Minne-

apolis: University of Minnesota Press.

Audretsch, D. B., and M. P. Feldman. 1996. R&D spillovers and the geography of

innovation and production. American Economic Review 86 (3): 630–640.

Austrian, G. D. 1982. Herman Hollerith: Forgotten Giant of Information Processing. New

York: Columbia University Press.

Azevedo, M. 1989. Vernacular features in educated speech in Brazilian Portuguese.

Hispania 72 (4): 862–872.

Bagno, M. 2001. Português do Brasil: herança colonial e diglossia. Revista da FAEEBA

10 (15): 37–47.

Barley, S. R., and G. Kunda. 2004. Gurus, Hired Guns, and Warm Bodies: Itinerant

Experts in a Knowledge Economy. Princeton, NJ: Princeton University Press.

Bastos, M. I. 1994. Winning the Battle to Lose the War: Brazilian Electronics Policy under

US Threat of Sanctions. Ilford. Essex, England: F. Cass.

Becker, H. S. 1953. Becoming a marihuana user. American Journal of Sociology 59 (3):

235–242.

232 References

Becker, H. S. 1963. Outsiders: Studies in the Sociology of Deviance. London: Free Press of

Glencoe.

Becker, H. S. 1982. Art Worlds. Berkeley: University of California Press.

Becker, H. S. 1998. Tricks of the Trade: How to Think about Your Research While You’re

Doing It. Chicago: The University of Chicago Press.

Becker, H. S., and A. Pessin. 2006. A dialogue on the ideas of “world” and “field.”

Sociological Forum 21 (2): 275–286.

Botelho, A. 1999. Da utopia tecnológica aos desafios da política científica e tec-

nológica: O Instituto Tecnológico de Aeronáutica (1947–1967). Revista Brasileira de

Ciencias Sociais 14 (39): 139–154.

Bourdieu, P. 1977. Outline of a Theory of Practice. London: Cambridge University

Press.

Braverman, H. 1974. Labor and Monopoly Capital. London: Monthly Review Press.

Brown, J. S., and P. Duguid. 1991. Organizational learning and communities of prac-

tice: Toward a unified view of working, learning, and innovation. Organization Sci-

ence 2 (1): 40–57.

Brown, J. S., and P. Duguid. 2000. The Social Life of Information. Boston, MA: Harvard

Business School Press.

Brown, J. S., and P. Duguid. 2001. Knowledge and organization: A social-practice

perspective. Organization Science 12 (2): 198–213.

Burawoy, M. 1979. Manufacturing Consent. Chicago: University of Chicago Press.

Burawoy, M. 1998. The extended case method. Sociological Theory 16 (1): 4–33.

Cairncross, F. 1997. The Death of Distance: How the Communications Revolution Is

Changing Our Lives. Cambridge, MA: Harvard Business School Press.

Campbell-Kelly, M. 2004. From Airline Reservations to Sonic the Hedgehog: A History of

the Software Industry. Cambridge, MA: MIT Press.

CAPES. 2009. “Documento de área—2009.” http://qualis.capes.gov.br/webqualis/

ConsultaCriterio2008.faces (accessed October 6, 2011).

CAPES. 2011. “Ciência da computação.” http://qualis.capes.gov.br/webqualis/Con-

sultaListaCompletaPeriodicos.faces (accessed October 6, 2011).

Cardoso, F. H. 1972. Dependency and development in Latin America. New Left

Review 74:83–95.

Carvalho, M. S. 2006. A Trajetória da Internet no Brasil: do Surgimento das Redes de

Computadores à Instituição dos Mecanismos de Governança. Master’s thesis, Universi-

dade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro.

References 233

Castells, M. 2000. The Rise of the Network Society. 2nd ed. Oxford: Blackwell.

Ceruzzi, P. 2003. A History of Modern Computing. 2nd ed. Cambridge, MA: MIT Press.

Collins, H. M. 1974. The TEA set: Tacit knowledge and scientific networks. Science

Studies 4 (2): 165–185.

Collins, H. M. 2001. Tacit knowledge, trust and the Q of sapphire. Social Studies of

Science 31 (1): 71–85.

Contu, A., and H. Willmott. 2003. Reembedding situatedness: The importance of

power relations in situated learning theory. Organization Science 14 (3): 283–295.

Contu, A., and H. Willmott. 2006. Studying practice: Situating Talking About

Machines. Organization Studies 27 (12): 1769–1782.

Dantas, V. 1988. Guerrilha Tecnológica: A Verdadeira História da Política Nacional de

Informática. Rio de Janeiro: LTC.

Dedijer, S. 1961. Why did Daedalus leave? Science 133 (3470): 2047–2052.

Figueiredo, L. H. de. 1992. “DEL: Uma linguagem para entrada de dados.” TeCGraf/

ICAD. http://www.tecgraf.puc-rio.br/~lhf/ftp/doc/tecgraf/del.ps.gz (accessed Octo-

ber 13, 2011).

Figueiredo, L. H. de, R. Ierusalimschy, and W. Celes. 1996. Lua: An extensible

embedded language. Dr. Dobb’s Journal 21 (12): 26–33.

Figueiredo, L. H. de, C. S. Souza, M. Gattass, and L. C. G. Coelho. 1992. Geração de

interfaces para captura de dados sobre desenhos. In Proceedings of SIBGRAPI ’92

(Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens, Águas de

Lindóia, São Paulo, Brazil), 169–175.

Didier, D., E. T. Weber, and J. A. Pimenta-Bueno. 2005. Gávea angels: The birth of an

angel group in Rio de Janeiro. In Angel Investing in Latin America, ed. E. F. O’Halloran,

P. L. Rodriguez, and F. Vergara, 51–60. Charlottesville, VA: Darden Business

Publishing.

Dos Santos, T. 1970. The structure of dependence. American Economic Review 60 (2):

235–246.

Duguid, P. 2005. “The art of knowing”: Social and tacit dimensions of knowledge

and the limits of the community of practice. Information Society 21 (2): 109–118.

Duguid, P. 2008. The community of practice then and now. In Organizing for the

Creative Economy: Community, Practice, and Capitalism, ed. A. Amin and J. Roberts,

1–10. Oxford: Oxford University Press.

Emerson, R., R. Fretz, and L. Shaw. 1995. Writing Ethnographic Fieldnotes. Chicago:

University of Chicago Press.

234 References

Ensmenger, N. 2010. Making programming masculine. In Gender Codes: Why Women

Are Leaving Computing, ed. T. J. Misa, 115–141. Hoboken, NJ: Wiley & Sons.

Evans, P. 1979. Dependent Development: The Alliance of Multinational, State, and Local

Capital in Brazil. Princeton, NJ: Princeton University Press.

Evans, P. 1995. Embedded Autonomy: States and Industrial Transformation. Princeton,

NJ: Princeton University Press.

Favret-Saada, J. 1980. Deadly Words: Witchcraft in the Bocage. Cambridge: Cambridge

University Press.

Ferguson, C. 1971. Diglossia. In Language Structure and Language Use: Essays by

Charles A. Ferguson, ed. A. S. Dil, 1–26. Stanford, CA: Stanford University Press.

Florida, R. 2008. Who Is Your City? New York: Basic Books.

Fogel, K. 2005. Producing Open Source Software. How to Run a Successful Free Software

Project. Sebastopol, CA: O’Reilly.

Form, W. 1987. On the degradation of skills. Annual Review of Sociology 13:29–47.

Frank, A. G. 1966. The development of underdevelopment. Monthly Review 18 (4):

17–31.

Freire, F. R. F. 1993. Pró-Censo: Algumas Notas Sobre os Recursos para Processamento de

Dados nos Recenseasmentos do Brasil. Memória Institucional–3. Rio de Janeiro: IBGE.

Friedman, T. L. 2006. The World Is Flat: A Brief History of the Twenty-First Century.

New York: Farrar, Straus and Giroux.

Fritz, W. B. 1996. The women of ENIAC. IEEE Annals of the History of Computing 18

(3): 13–28.

Garfinkel, H. 1967. Studies in Ethnomethodology. Englewood Cliffs, NJ: Prentice Hall.

Giddens, A. 1979. Central Problems in Social Theory. London: Macmillan.

Giddens, A. 1984. The Constitution of Society: Outline of the Theory of Structuration.

Berkeley, CA: University of California Press.

Giddens, A. 1991. The Consequences of Modernity. Stanford, CA: Stanford University

Press.

Gieryn, T. F. 1983. Boundary-work and the demarcation of science from non-sci-

ence: strains and interests in professional ideologies of scientists. American Sociologi-

cal Review 48 (6): 781–795.

Glaser, B. G., and A. L. Strauss. [1967] 1999. The Discovery of Grounded Theory: Strate-

gies for Qualitative Research. New York: Aldine de Gruyter.

Graham, P. 2006. “How to Be Silicon Valley.” http://www.paulgraham.com/silicon-

valley.html (accessed June 19, 2008).

References 235

Grewal, D. S. 2009. Network Power: The Social Dynamics of Globalization. New Haven,

CT: Yale University Press.

Grier, D. A. 1996. The ENIAC, the verb “to program” and the emergence of digital

computers. IEEE Annals of the History of Computing 18 (1): 51–55.

Grosjean, F. 1982. Life with Two Languages: An Introduction to Bilingualism. Cam-

bridge, MA: Harvard University Press.

Hester, A., R. Borges, and R. Ierusalimschy. 1997. CGILua: A multi-paradigmatic tool

for creating dynamic WWW pages. In SBES XI (XI Simpósio Brasileiro de Engenharia

de Software, Fortaleza, Ceará, Brazil), 347–360.

Hill, B. M. 2005. “Financing volunteer free software projects.” Advogato. http://www.

advogato.org/article/844.html (accessed March 12, 2009).

Hirschi, A. 2007. Traveling light, the Lua way. IEEE Software 24 (5) (September/Octo-

ber): 31–38.

Hughes, E. 1958. Men and Their Work. Glencoe, IL: Free Press.

Ierusalimschy, R., L. H. de Figueiredo, and W. Celes. 1996. Lua—An extensible

extension language. Software, Practice & Experience 26 (6): 635–652.

Ierusalimschy, R., L. H. de Figueiredo, and W. Celes. 2007. “The evolution of Lua.”

In Proceedings of ACM HOPL III (ACM SIGPLAN History of Programming Languages Con-

ference). New York: Association for Computing Machinery. http://dl.acm.org/cita-

tion.cfm?id=1238844.

Johnson, H. G. 1965. The economics of the ‘brain drain’: The Canadian case. Minerva

3 (3): 299–311.

Katz, M. L., and C. Shapiro. 1986. Technology adoption in the presence of network

externalities. Journal of Political Economy 94 (4): 822–841.

Kelty, C. 2008. Two Bits: The Cultural Significance of Free Software. Durham, NC: Duke

University Press.

Kendall, L. 1999. Nerd nation: Images of nerds in US popular culture. International

Journal of Cultural Studies 2 (2): 260–283.

Knorr Cetina, K. 1999. Epistemic Cultures: How the Sciences Make Knowledge. Cam-

bridge, MA: Harvard University Press.

Kroah-Hartman, G., J. Corbet, and A. McPherson. 2009. “Linux kernel development:

How fast it is going, who is doing it, what they are doing, and who is sponsoring it.

An August 2009 update. ” Linux Foundation white paper, August 2009. http://www.

linuxfoundation.org/publications/whowriteslinux.pdf (accessed September 10, 2011).

Kunda, G. 1992. Engineering Culture: Control and Commitment in a High-Tech Corpora-

tion. Philadelphia, PA: Temple University Press.

236 References

Laird, C., and K. Soraiz. 1998. “1998: Breakthrough year for scripting.” SunWorld.

http://sunsite.uakom.sk/sunworldonline/swol-08-1998/swol-08-regex.html

(accessed May 19, 2009).

Lamont, M. 2000. The Dignity of Working Men. Cambridge, MA: Harvard University

Press.

Lamont, M., and V. Molnár. 2002. The study of boundaries in the social sciences.

Annual Review of Sociology 28:167–195.

Latour, B. 1987. Science in Action: How to Follow Scientists and Engineers through Society.

Cambridge, MA: Harvard University Press.

Latour, B. 1988. The Pasteurization of France. Cambridge, MA: Harvard University

Press.

Latour, B., and S. Woolgar. 1986. Laboratory Life: The Construction of Scientific Facts.

Princeton, NJ: Princeton University Press.

Lave, J., and E. Wenger. 1991. Situated Learning: Legitimate Peripheral Participation.

Cambridge: Cambridge University Press.

Leontiev, A. N. [1972] 1981. The problem of activity in psychology. In The Concept of

Activity in Soviet Psychology, ed. J. V. Wertsch, 37–71. Armonk, NY: M. E. Sharpe.

Levine, E. 1972. Chicago’s art world: the influence of status interests on its social

and distribution systems. Urban Life and Culture 1 (3): 293–322.

Levy, S. 2001. Hackers: Heroes of the Computer Revolution. New York: Penguin Books.

Light, J. S. 1999. When computers were women. Technology and Culture 40 (3):

455–483.

Lobkowicz, N. 1967. Theory and Practice: History of a Concept from Aristotle to Marx.

Notre Dame, IL: University of Notre Dame Press.

Luzio, E. 1996. The Microcomputer Industry in Brazil: The Case of a Protected High-Tech-

nology Industry. Westport, CT: Praeger.

MacKenzie, D., and G. Spinardi. 1995. Tacit knowledge and the uninvention of

nuclear weapons. American Journal of Sociology 101 (1): 44–99.

Marques, I. da C. 2000. Reserva de mercado: um mal entendido caso político-tec-

nológico de “sucesso” democrático e “fracasso” autoritário. Revista de Economia da

Universidade Federal de Paraná 26 (24): 91–116.

Marques, I. da C. 2003. Minicomputadores brasileiros nos anos 1970: Uma reserva

de mercado democrática em meio ao autoritarismo. História, Ciências, Saúde—Man-

guinhos 10 (2): 657–681.

Marques, I. da C. 2005. Cloning computers: From rights of possession to rights of

creation. Science as Culture 14 (2): 139–160.

References 237

Marshall, A. [1890] 1927. Book IV: The agents of production. Chapter X. Industrial

organization, continued. The concentration of specialized industries in particular

localities. In Principles of Economics: An Introductory Volume, 267–277. London:

Macmillan.

Marx, K. [1845a] 1978. Theses on Feuerbach. In The Marx-Engels Reader. 2nd ed., ed.

R. C. Tucker: 143–145. New York: W. W. Norton and Co.

Marx, K. [1845b] 1978. German ideology: Part I. In The Marx-Engels Reader, 2nd ed.,

ed. R. C. Tucker: 146–200. New York: W. W. Norton and Co.

Meyer, J., J. Boli, G. Thomas, and F. Ramirez. 1997. World society and the nation-

state. American Journal of Sociology 103 (1): 144–181.

Morais, F. 2006. Montenegro: As Aventuras do Marechal que Fez uma Revolução nos Céus

do Brasil. São Paulo: Planeta.

Nardi, B. 2010. My Life as a Night Elf Priest: An Anthropological Account of World of

Warcraft. Ann Arbor: University of Michigan Press.

Ó Riain, S. 2000. Networking for a living: Irish software developers in the global

workplace. In Global Ethnography: Forces, Connections, and Imaginations in a Postmod-

ern World, ed. M. Burawoy et al., 175–202. Berkeley: University of California Press.

Orr, J. 1996. Talking About Machines: An Ethnography of a Modern Job. Ithaca, NY: Cor-

nell University Press.

Petersen, W. E. P. 1994. Almost Perfect: How a Bunch of Regular Guys Built WordPerfect

Corporation. Rocklin, CA: Prima Publishing.

Polachek, H. 1997. Before the ENIAC. IEEE Annals of the History of Computing 19 (2):

25–30.

Polanyi, M. 1966. The Tacit Dimension. New York: Doubleday.

Powell, W., K. W. Koput, J. I. Bowie, and L. Smith-Doerr. 2002. The spatial clustering

of science and capital: accounting for biotech firm–venture capital relationships.

Regional Studies 36 (3): 291–305.

Raymond, E. 1999. The Cathedral and The Bazaar. Sebastopol, CA: O’Reilly.

Ryle, G. 1949. Knowing how and knowing that. In The Concept of Mind, 25–61. Chi-

cago: The University of Chicago Press.

Samuelson, P., R. Davis, M. Kapor, and J. H. Reichman. 1994. A manifesto concern-

ing the legal protection of computer programs. Columbia Law Review 94:2308–2431.

Sassen, S. [1994] 2006. Cities in a World Economy. 3rd ed. Thousand Oaks, CA: Pine

Forge Press.

Saxenian, A. 1996. Regional Advantage: Culture and Competition in Silicon Valley and

Route 128. Cambridge, MA: Harvard University Press.

238 References

Saxenian, A. 1999. “The Silicon Valley–Hsinchu connection: technical communities

and industrial upgrading.” Working Paper No. 99-10, Stanford Institute for Eco-

nomic Policy Research.

Saxenian, A. 2006. The New Argonauts: Regional Advantage in a Global Economy. Cam-

bridge, MA: Harvard University Press.

Schatzki, T. 1996. Social Practices: A Wittgensteinian Approach to Human Activity and

the Social. Cambridge, UK: Cambridge University Press.

Schoonmaker, S. 2002. High-Tech Trade Wars: U.S. Brazilian Conflict in the Global

Economy. Pittsburgh, PA: University of Pittsburgh Press.

Schoonmaker, S. 2009. Software politics in Brazil: Toward a political economy of

digital inclusion. Information Communication and Society 12 (4): 548–565.

Schwarz, M., and Y. Takhteyev. 2010. Half a century of public software: Open source

as a solution to the holdup problem. Journal of Public Economic Theory 12 (4):

609–639.

Senra, N. 2007. Estatísticas Organizadas (c.1936–c.1972). Vol. 3, História das Estatísti-

cas Brasileiras. Rio de Janeiro: IBGE.

Sewell, W. H., Jr. 1992. A theory of structure: Duality, agency, and transformation.

American Journal of Sociology 98 (1): 1–29.

Shaw, A. 2011. Insurgent expertise: The politics of free/livre and open source soft-

ware in Brazil. Journal of Information Technology & Politics 8 (3): 253–272.

Shibutani, T. 1955. Reference groups as perspectives. American Journal of Sociology

60:562–569.

Staa, A. von. 2003. Introductory notes. In Carlos José Pereira de Lucena: Pioneiro da

Informática, ed. A. von Staa, A. L. Furtado, and S. D. J. Barbosa. Rio de Janeiro:

PUC-Rio.

Strauss, A. 1978. A social world perspective. Studies in Symbolic Interaction 1:

119–128.

Strauss, A. 1979. “Social worlds and spatial processes: An analytic perspective.” An

unpublished paper. (This paper, scanned by Adele Clark, was available online in

2006, but does not appear to be available anymore.)

Strauss, A. 1982. Social worlds and legitimation processes. Studies in Symbolic Interac-

tion 4: 171–190.

Takhteyev, Y. 2009. Coding Places: Uneven Globalization of Software Work in Rio

de Janeiro, Brazil. PhD dissertation, University of California, Berkeley.

Takhteyev, Y., and A. Hilts. 2010. “Investigating the geography of open source soft-

ware through Github.” Working paper. http://takhteyev.org/papers/Takhteyev-

Hilts-2010.pdf (accessed February 27, 2012).

References 239

Tigre, P. 2003. Brazil in the age of electronic commerce. Information Society 19 (11):

33–43.

Torvalds, L. 2001. Just for Fun: The Story of an Accidental Revolutionary. New York:

HarperCollins.

Traweek, S. 1992. Beamtimes and Lifetimes: The World of High Energy Physicists. Cam-

bridge, MA: Harvard University Press.

Turner, F. 2006. From Counterculture to Cyberculture: Stewart Brand, the Whole Earth

Network, and the Rise of Digital Utopianism. Chicago: University of Chicago Press.

Unruh, D. 1980. The nature of social worlds. Pacific Sociological Review 23:271–296.

Van Maanen, J. 1988. Tales of the Field: On Writing Ethnography. Chicago: University

of Chicago Press.

Van Maanen, J., and S. R. Barley. 1984. Occupational communities: Culture and

control in organizations. Research in Organizational Behavior 6:287–365.

Vygotsky, L. 1978. Interaction between learning and development. In Mind in Soci-

ety, ed. and trans. M. Cole, 79–91. Cambridge, MA: Harvard University Press.

Vygotsky, L. [1930] 2002. Opyдиe и знaк в paзвитии peбëнкa. In Пcиxoлoгия. Moscow:

EKSMO-Press.

Wallerstein, E. 1974. Dependence in an interdependent world: The limited possibili-

ties of transformation within the capitalist world economy. African Studies Review 17

(1): 1–26.

Weiss, R. S. 1994. Learning from Strangers: The Art and Method of Qualitative Interview

Studies. New York: Free Press.

Weik, M. 1961. “A third survey of domestic electronic digital computing systems.”

Ballistic Research Laboratories, Report No. 1115. http://ed-thelen.org/comp-hist/

BRL61.html (accessed October 14, 2011).

Wellman, B., and K. Hampton. 1999. Living networked on and offline. Contemporary

Sociology 28 (6): 648–654.

Willis, P. 1981. Learning to Labor: How the Working Class Kids Get Working Class Jobs.

Morningside ed. New York: Columbia University Press.

Xiang Biao. 2006. Global “Body Shopping”: An Indian Labor System in the Information

Technology Industry. Princeton, NJ: Princeton University Press.

Zook, M. A. 2002. Grounded capital: Venture financing and the geography of the

Internet industry, 1994–2000. Journal of Economic Geography 2:151–177.

Abbott, A., 221n18

Academic research, 61, 124, 143, 148,

155, 156, 160, 207

institutions, 93–94, 95, 103–104, 106–

107, 167–168 (see also under names of

individual institutions)

and productivity metrics, 56, 160

publications, 56–57, 147–150,

160–161

publishing in English vs. Portuguese,

56–57, 160–161

Action. See Agency; Structuration

action and imagination, 33–34 (see

also Imagination)

collective, 36, 42 (see also Alliances)

practice as a form of, 29

Activity. See Practice

Activity theory. See Vygotsky, L.

Actor-network theory. See Latour, B.

Actors. See Agency; Structuration

Adler, E., 108, 220n11

Adobe, 10, 135, 138, 184

Adobe Photoshop Lightroom, 135, 138

Africa, 97

Agency (social theory), 28, 30–32, 44–45

Alan (pseudonym), 64, 186–187, 196,

200, 203–204

Alliances, 103, 109–110, 180–183, 204,

211, 214

Alta (pseudonym), 17–19, 35, 47–53,

67, 113, 115–133, 135–136, 176,

179–181, 201

Amazon.com, 11, 57–58

Amiga, 75

Anderson, B., 36

Aneesh, A., 221n19

Angry Birds, 10, 135

Anthropologists, 9, 31

Antônio (pseudonym), 145–147, 162–

164, 166

Appadurai, A., 6, 34, 39

Applications. See Software, software

applications

Argentina, 164, 178, 203

Aristotle, 29

Asia, 99

Asperger’s syndrome, 72

Atari, 73. See also Computer games

Audretsch, D. B., 225n14

Austrian, G. D., 96

Authentication of membership, 23, 28,

39, 41, 161, 210

Aviation in Brazil, 103, 110, 203, 210

Azevedo, M., 222n3

Backward compatibility, 120, 141–142,

143–144, 154–155

Bagno, M., 222n3

Index

Note: Page numbers for definitions are in boldface.

242 Index

Baixada Fluminense, 74

Bangalore, 27, 45, 89, 194, 225n11

Barley, S. R., 88, 220n12, 221n17

BASIC, 75. See also Visual Basic

Bastos, M. I., 110

Beanbags, 65, 116, 128, 191, 192

Becker, H. S., 27, 30, 76, 149, 218n6,

219n4, 220n15, 223n2

Berkeley (city), 12, 14, 68, 108, 116

Berkeley, University of California at, 12,

68, 116, 202

Berlin, 8

Bilingualism. See also English language;

Portuguese language

bilingual documentation, 60

bilingual puns, 54

diglossia, 48–49

in interviews, 13–14

mixing languages in code, 48, 51, 52,

55, 145 (see also Code)

multilingualism on lua-l, 57

nonspeakers, 65

BITNET, 111

Bit twiddling, 84, 86

Blogs, 33, 66, 97, 174

Blue box, 80

BNDES (Brazilian Development Bank),

183

Books

access to books, 11, 57–58, 61–62, 78, 84

book publishing, 57–58 (see also Aca-

demic research, publications)

Programming in Lua (see Programming

in Lua)

translated English (see Translation,

translating English books)

Bootstrapping, 106

Borges, R., 181, 229n3

Boston, 103. See also MIT

Boston–Washington Corridor, 102. See

also MIT; New York; University of

Pennsylvania; Washington, D.C.

Botelho, A., 103

Boundaries, 24, 36–40, 69–70, 209, 212

Bourdieu, P., 30, 32, 219n6

Braverman, H., 221n17

Brazil. See also under specific topics

Brazilian Digital Television System

(SBTVD), 159, 176–177, 200

“Brazilian software,” 99, 163–164

choice of Brazil as the site, 1–2, 8

products made in Brazil, 165–170 (see

also Nation: national technology)

as a “South American” country, 170–173

Brazilian Development Bank (BNDES),

183

Brazilian real. See Real

Brown, J. S., 25, 26

Buddhism, 67

Bugs (software errors), 125, 141, 189,

227n5

Bull (company), 104

Burawoy, M., 218n7, 221n17

Bureaucracy, 87, 112, 113, 147, 171. See

also Regulation

Burroughs B205, 106

Cairncross, F., 1, 21

California. See San Francisco Bay Area

Cambridge (United Kingdom), 8, 157

Campbell-Kelly, M., 96, 97, 224n6

Canada, 67, 106, 143

C and C++ (programming languages),

137

as an alternative to Lua, 164, 181

ANSI C, 151

integration with Lua, 58, 137–138,

152, 153–154, 164, 181, 185

Jason’s learning of C and C++, 76, 84

Kepler and C programmers, 195, 197

as lingua franca, 144

CAPES, 160, 228n1

Capital

cultural, 49, 63

market capitalization, 3, 44, 101,

225n10

Index 243

social (see Networks, local social

networks)

symbolic, 41

venture, 101, 112, 117, 182–183

CAPRE (Committee for Coordination

of Electronic Processing Activities),

107–109, 113

Cardoso, F. H., 221n20

Carioca (resident of the city of Rio de

Janeiro), 2, 65, 71, 93, 143, 179

Carlos (pseudonym), 168–171, 176

Carvalho, M. S., 111, 226n22

Castells, M., 27

Cathedral and the Bazaar, The, 198

Catholic universities, 83. See also

PUC-Rio

Celes, W., 144, 149, 152, 159, 227n6,

228n12, 228n14

Célio (pseudonym), 73, 75, 83

Census, 40

Brazilian, 104

United States Census Office, 95–96

Centers, 1–9, 18, 24, 41–45, 78–81, 161–

162, 206, 220n16, 221n20. See also

under individual place names

asymmetry between centers and pe-

riphery, 7, 18, 42–43

idealization of the, 88

as “meccas,” 28, 45, 79, 208, 215

the need to pass through the, 70, 165–

166, 171, 178

rise of new, 101–102, 215

Ceruzzi, P., 95, 96

CGILua, 153, 181–186, 229n3

Chatroulette, 3

Chennai, 45

Chicago, 23, 28

Chicago School of Sociology, 27

Chico (pseudonym), 167–168, 177, 186

Children, 63, 72–83

China, 66, 169

Chinese language, 58, 66–67, 179

Ciência de computação, 107

Cisco, 10

Class (programming), 50–51

Clients

Alta’s clients, 15, 17, 47, 52, 116–121,

123–127, 132

foreign, 169

local, 69, 80, 89, 112, 155–156, 161,

165, 176, 180, 197, 210

Nas Nuvens’s, 59, 61, 184

Petrobras as Tecgraf’s client, 154, 143

Cliques, 25–26

Clusters, 3, 5, 225n14

Coalitions. See Alliances

COBOL (programming language), 86

Code (software code). See also Software

availability over the Internet, 3, 112

code repositories, 3, 17, 192, 213

comments in, 50, 144–147, 227n4

compiling source, 195–197

and English, 47–53, 55–56, 144–146,

193–194

examples of source, 47, 51

Collins, H. M., 213

Colossus (computer), 95

Command line, 131, 138

Comments (in code), 50, 144–147,

227n4

Commitments

ethnographer’s, 16–17, 199

local and global, 5–6, 15, 45, 48, 61,

70, 136, 140, 142, 144, 154, 186

Communities

as bounded, 36

“communities of geeks” (Friedman), 3

imagined community, 36

Kepler’s community, 59, 125

local community, 35–36, 40–42, 48,

70, 73

Lua’s “community,” 16, 35–36, 57,

122–124, 135, 138, 139, 142, 150,

152, 162, 172–177, 184–186, 195,

199–201

national community, 5, 39

244 Index

open source, 9, 113, 118, 152, 167

of practice, 24–27, 207, 213

software developers as a community,

35–36, 88, 99

Commuting, 2, 132

Companies

large foreign, 3, 94, 101, 109, 119,

125, 170–171 (see also EIT; IBM; Sun

Microsystems)

starting a company in Brazil, 58, 80

(see also Alta; Nas Nuvens)

Competition

with foreign actors, 80, 138, 180

local competition, 127, 170, 182, 184

Compilation (software), 50

compiling Kepler for Windows,

195–197

Complementarity, 44, 138

Computer games

as a context for learning English, 61–62

as an introduction to computing,

71–76, 82, 181

Lua’s use in computer games, 10, 58,

137, 138, 139, 146, 150–152

Computers

arrival in Brazil, 104–112

computer files as model of knowledge,

2, 5

computer games (see Computer

games)

computer-mediated interaction, 9 (see

also Email; Instant Messaging; Mail-

ing lists)

early electronic, 95

human, 95–96

manufacturing in Brazil, 34, 93, 108–113

non-Brazilian companies making (see

also Bull; Borroughs; DEC; IBM;

Remington Rand)

Contracting, 87–88, 117–119

Control. See also Managers

collective control of resources, 37–49

of the computer, 76

over Lua, 172–173

of work from the centers, 3, 41, 44,

221n19

Contu, A., 219n1

Copacabana, 59, 74, 132, 179,

Copyright, 170–171, 226n24

Corbet, J., 225n12

Corruption, 87

Craig (pseudonym), 137–139, 141–142,

154, 185, 229n4

Cray (computer), 151–152

Cruft, 141–142

Culture. See also under Free / open

source software; Software

cultural diglossia, 6, 42, 49–50

cultural and economic/material sides

of practice, 9–10, 23, 40, 42, 83,

205–209

culture farming, 185, 198, 212

occupational, 37

schemas as, 31, 220n8

startup, 128

Customization, 119, 125, 185, 197

Cutting-edge technology, 119–120

Dantas, V., 104, 105, 107, 109, 226n15

Database (technology), 52, 75, 81, 84,

86, 101, 126–127, 181

DEC (Digital Equipment Corporation),

151

Dedijer, S., 225n13

DEL (Data Entry Language), 142, 144,

227n4, 228n9

Democratization in Brazil in the 1980s,

110

Dependency theory, 108

Developers. See Software developers

Didier, D., 226n1

Digital television, 159, 176–177, 200

Diglossia, 48–49. See also Bilingualism

Disembedding, 6, 22–23, 105, 112,

of Lua, 54–55, 70, 135–137, 140–141, 178

and reembedding, 6, 22–23, 43, 209

Index 245

Documentation

availability over the Internet, 3, 62,

111, 129–131

language of Lua/Kepler, 51, 54, 59–61,

159, 177, 188

vs. local expertise, 111

Lua documentation used by California

developers, 138–139

Documents

as elements of practice, 22, 26–27, 213

Domain-specific languages, 144

Domestic technology, 163–164,

166–167

Doom, 72, 82. See also Computer games

DOS, 76, 79, 82

Dos Santos, T., 108

Dot-com boom, 183

Downloading

downloads as a metric of success, 124,

146

ease of downloading, 80, 129–130,

138, 196

LuaForge downloads, 97–100, 146

Downtown (Rio neighborhood), 47, 74,

115–116, 118, 121

Dr. Dobb’s Journal, 149

Dreamhost, 196

Drupal, 202, 204

Duguid, P., 25, 26, 219n1

Eckert, J. P., 95

Eclipse (application), 122, 129

E-commerce, 38, 126–127

Economic development, 8

under Kubitchek, 104

role of Lua, 159, 161, 169

Economic literature, 44

Economic relations. See also under Com-

panies; Culture; Labor; Software

Economies of scale, 44, 109

Edmundo (pseudonym), 64

Eduardo (pseudonym), 116–118, 122,

131–132

Education. See Graduate education;

Higher education; High school

EIT (pseudonym), 119, 123–125, 127,

133

El Camino Real (road in Silicon Valley),

25

Electricity, 3, 94

Email. See also Mailing lists

as a private medium, 16, 64

Embraer, 203 (see also Aviation in Brazil)

Emerson, R., 217n6

Employment, 29, 37, 44, 82–83, 86–91,

122, 156, 207, 212. See also Manag-

ers; Software development, as a job

English language. See also under Pro-

gramming in Lua

developers with limited proficiency,

63–66, 123, 193

English alphabet, 50

as a foreign language, 48–49

in India, 212

in interviews, 13–14, 48

as the language of software, 48–70

as the language of the United States,

66–69

learning, 61–64

legal, 149

as a lingua franca, 56, 44, 66–69, 139

on mailing lists, 149–150, 186–187,

192

and network effects, 44–45

in software code, 48–56

ENIAC, 95–96, 97

Ensmenger, N., 224n5

Entrepreneurs, 117–119, 182–183. See

also Alta; João; Nas Nuvens

Esperanto, 66, 209

Estácio de Sá University, 192

Ethnography, 11–12, 15–17, 218n12

Europe, 43, 54, 99–100, 103–104

Evans, P., 105, 108, 109, 221n20

eWeb (pseudonym), 123, 125–126

Expert systems, 82

246 Index

Fabio (pseudonym), 52–54, 121–133,

161, 201

Face-to-face interaction, 15–16, 25, 35,

64, 151, 187, 218n12

Favelas, 115

Favret-Saada, J., 194, 230n5

Feldman, M. P., 225n15

Felipe (pseudonym), 116–119, 128, 132

Ferguson, C., 222n2

Fernando (pseudonym), 118, 122, 201

Figueiredo, Luiz Henrique de

citations, 149, 152, 159, 227n6,

227n8, 228n9, 298n12, 228n14

as a participant, 143–146, 148–149,

177, 200, 227n4, 229n6

Financing. See Capital, venture capital;

FINEP; Kepler, funding of

FINEP, 59–61, 183–184, 187, 189, 196,

200–201, 204, 229n4

Finland, 12, 45, 225n13

Florida, R., 1, 21

Fluminense (resident of the State of Rio

de Janeiro), 2, 74

Fogel, K., 175

Foreign currency, 107–108

Foreign language. See English language,

as a foreign language; Portuguese

language

Form, W., 222n17

Fortran, 93

Forum (online), 62, 129, 150, 187

Frank, A. G., 108

Free / open source software, 9–10, 112–

113, 148–149, 175–176, 184–192,

197–199

ability to modify software, 9, 113, 175

“cathedral” vs. “bazaar,” 172

and communication, 176, 186–192

(see also under Mailing lists)

and decision making, 175

and “ergosphere,” 124

and forking, 175–176

as a gift culture, 123–124

and “hacking” culture, 9, 97, 217n5

and Lua, 149, 152, 172–176

and managers, 197–199

ownership customs, 175–176

right to redistribute, 9, 113

users as codevelopers, 152

Freire, F. R. F., 104, 105, 226n15

French language, 68, 107

Fretz, R., 217n6

Friedman, T. L., 1, 3, 9, 21

Fritz, W. B., 96

Function (programming), 53, 54, 193

Fundão (island), 74, 115

Funding. See Capital, venture capital;

FINEP; Kepler, funding of

Gadgets, 67, 207, 209

Games. See Computer games; Role-play-

ing games

Garfinkel, H., 218n8

Geeks, 3, 9, 13, 36, 71

Gender

fathers, 76

nerds and masculinity, 14, 42

predominance of men in computing,

13, 50, 96, 224n5

women, 13, 95–97

Generations

of people, 29, 214

of technology, 96, 105, 109

Geolite City Database, 98

German idealism, 29

German language, 54, 57, 58, 66, 150

Germans on lua-l, 57, 150

Giddens, A., 22, 24, 30–32, 33, 82, 131,

135, 141, 209, 211, 218n8, 219n6,

220n7, 220n9

Gieryn, T. F., 39

Ginga, 176–177. See also Digital television

Glaser, B. G., 13

Globalization, 1–2, 21–24, 130–131,

203–204, 205–206, 209–210

as a daily activity, 2, 23, 25, 130, 206

Index 247

globalizing projects, 2, 94, 110, 112,

145, 157, 204, 209–210

open source and, 9–10, 112–113 (see

also Free / open source software)

Google

as a central site, 3–4, 10, 225n13

using Google search, 64, 77, 80, 123,

129–130, 173, 174

Government. See Regulation

Graduate education

commercializing doctoral research,

117, 182

outside Brazil, 63, 104, 108, 143

at PUC-Rio’s Department of Informat-

ics, 58, 63, 106–107, 143, 162, 177,

181, 186, 187, 188, 192

Takhteyev’s program at Berkeley, 12,

116, 202

Graham, P., 7

Graphics, computer, 84, 138, 143

Gregorian calendar, 51

Grewal, D. S., 44, 222n23

Grier, D. A., 224n4

Grim Fandango, 150, 154

Gringos, 52, 68

Grosjean, F., 65, 222n2

Guinness Book of Records, 10

Hackers, 9, 97, 217n1, 217n5

Hampton, K., 180

Hardware, 76, 80–81, 86, 94, 96, 111,

137–138

Helsinki, 45

Herculoids (mailing list), 35–36, 116

Hester, A., 181, 229n3

Higher education, 83–86. See also Está-

cio de Sá University; ITA; PUC-Rio;

UFRJ

while working, 84, 87, 117, 126

High school

attending at night, 90

being a “nerd” in, 71–72, 80, 83

private vs. public, 84

vocational, 81

Hill, B. M., 186

Hilts, A., 225n12

Hirschi, A., 140

History of computing in Brazil, 103–112

HTML, 62

Hughes, E., 37, 220n17

Hyderabad, 45

Hyperinflation in Brazil, 111

IBGE (Brazilian Institute of Geography

and Statistics), 104–106

IBM, 94, 96–97, 104, 108–109, 125,

170–171, 226n16

Identity, collective, 35–37

national identity, 167, 212 (see also

Nations)

as software developers, 24, 26, 37, 42,

97, 99

Ierusalimschy, Roberto

citations, 15, 54, 61, 122, 140, 143,

149, 152, 159, 162, 165, 170, 172,

177, 181, 186, 227n6, 227n8,

228n12, 228n14, 228n16, 229n3

as a participant, 54–61, 68–69, 122,

140, 143–156, 159, 162, 164–165,

168, 170–177

Imagination, 34, 55, 203

and half-belief, 117

imagining “crazy” plans, 80, 165, 168,

181, 186, 189, 191, 194–195, 203, 211

subvocal, 34, 55, 147, 194

IMPA (Institute for Pure and Applied

Mathematics), 74, 143, 157

Incubators, 117, 159, 226n1

India

becoming a software developer in, 89

Brazilians talking about, 119, 169,

193–194

English in, 45, 212

and Silicon Valley, 27, 45, 51, 80,

221n19, 225n11

Informática, 75, 85, 89, 93, 106, 107

248 Index

Information systems, 85, 86, 117

Innovation

abroad, 42, 155, 208

in Brazil, 6, 8, 86, 147, 159–161, 179–

184, 204, 211, 214

Instant messaging, xiii, 16, 59–60, 187

Institute for Research on Learning, 24

Instructions (in computing), 50, 96

Intellectual property, 112, 146, 170–

171, 217n4, 226n24, 229n5

InterJ (pseudonym), 117–119

Internet

and documentation, 3, 62, 111,

129–131

internet access, 3, 111–112, 128,

226n22

Internships, 85–86

Interviews

as a research method, 11–18, 26, 28,

64, 212, 115, 116, 122, 219n13

for software hiring, 75

Intranet, 47, 118

IP addresses, 97–98

Isolationism, 8, 94, 109. See also Market

reserve

ITA (Instituto Tecnologico de Aeronau-

tica), 93, 103–104, 108, 215

Italy, 203

IT (information technology). See also

Software

as a translation of “informática,” 85,

87, 107

Ivan. See Marques, Ivan da Costa

Jabuticaba, 161

Japan, 193

Japanese language, 179

Jargon, 26, 69

Jason (also “Zé Luis”), 73–82, 84–88,

91, 93–94, 107, 109, 200–202, 208,

215

Java (programming language)

“100% Java,” 116, 120, 138

and English, 48–52

Java frameworks, 128, 130, 194

learning, 83, 123

and Lua, 118

and network externalities, 44

as a popular language, 15, 17, 44, 47,

115, 116, 123–125, 201

JavaScript, 126, 138, 142, 150

Jetty (web server), 129–131

João (pseudonym), 59–60, 80, 182–184,

200

Jobs. See Software development, as

a job

Jokes

half-joking, 128, 179–180, 193–195

programmers’, 54, 97, 144, 147 (see

also Puns)

Jorge (pseudonym), 111

Katz, M. L., 44

Kelty, C., 9, 221n17

Kendall, L., 42

Kepler, 8, 15–17, 58–61, 179–204,

207–209

and Alta, 118, 122–125, 132–133

funding of, 59–61, 182–186, 202,

229n4 (see also FINEP)

as “national” technology, 166–167

Keywords (reserved words), 50, 53–54,

60, 136, 144–145, 212

Knorr Cetina, K., 27

Knowledge

high- vs. low-level, 84–85, 196

“knowledge flows,” 4, 7

knowledge management, 25

knowledge media, 26

“knowledge work,” 2, 7, 27

and practice, 5, 25 (see also Practice)

uploading (Friedman), 3, 9

Korean language, 54, 58, 66

Kroah-Hartman, G., 225n12

Kubitschek, J., 104

Kunda, G., 88, 223n1

Index 249

Labor

labor laws, 87–88

labor market, 18, 86, 105, 122

paid vs. free, 186, 197–199, 204 (see

also Free / open source software)

software development as (see Software

development, as a job)

work as, 221n17

Laird, C., 174

Lamont, M., 73, 220n14, 221n17

Language. See Bilingualism; English lan-

guage; Portuguese language

Largo da Carioca, 115

LaTeX (software application), 56

Latin alphabet, 50

Latin America, 103, 135. See also South

America

Latour, B., 5, 22, 30, 43, 94, 210,

218n11, 224n2

Lave, J., 25, 39, 45, 88, 214, 219n1,

220n16, 221n20

Legacy systems, 120, 141–142, 143–144,

154–155

Legitimate peripheral participation, 39,

221n20

Legitimation. See Authentication of

membership

Leonardo (pseudonym), 129–132

Leontiev, A. N., 30

Levine, E., 23, 28, 219n3

Levy, S., 217n5

Library (software). See Software compo-

nents, libraries

Licensing (technology). See also Free /

open source software development

and Alta, 117, 125

and Lua, 148–149, 170–172, 228n12

under market reserve, 113

Lieutenants, the, 130

Light, J. S., 96

Linux, 9, 62, 64, 67, 101–102, 113, 124,

131, 195–196, 203

Lisp, 140

Lobkowicz, N., 219n5

Localization (adapting to local needs),

11, 53, 107, 120, 182, 225n11

Lua, 10–11, 15–17, 54–58, 135–178

attempts to commercialize, 148, 157,

168–172

contracts about, 170–171

as elegant, 138, 140, 142, 191, 207

growth in popularity, 155, 165,

173–174

as “homegrown,” 122, 166

lua-br mailing list, 177

lua-l mailing list (see lua-l mailing list)

Lua C API, 138, 153–154 (see also C

and C++ programming languages)

lua.org website, 152

Lua Workshop, 138–139, 141, 174,

177

as an outlier, 145

ownership of Lua, 146, 171

performance benefits, 138, 163

Programming in Lua (see Programming

in Lua)

promotion at PUC-Rio, 169

vs. Python, 163

as a scripting language, 137, 150–151,

227n8

separation from local context,

135–136

transition from Lua 3.2 to Lua 4,

152–154

LuaForge, 97–100, 146, 185–186

lua-l mailing list, 15, 35, 57, 137, 139,

149–152, 162, 200, 208

Portuguese on lua-l, 57, 150, 117

LucasArts, 150–151

Lucena, Carlos, 106, 108

Luciano (pseudonym), 61–65, 206, 209,

223n9

Luís (pseudonym), 116–118, 122, 132

Luiz Henrique. See Figueiredo, Luiz Hen-

rique de

Luzio, E., 110

250 Index

MacKenzie, D., 136

Mailing lists, 66, 116, 204, 213, 218n13

Herculoids (see Herculoids)

Kepler’s mailing list, 64–65, 185–192

lua-br mailing list, 177

Lua’s mailing list (see lua-l mailing

list)

python-brasil, 163

Mainframe computers, 86, 108–109

Managers

becoming a manager, 121–122, 131, 197

and Dilbert cartoons, 197, 204

as incompetent, 69, 124

Mandarin Chinese. 58, 66–67, 179

Manual workers, 72

Márcio (pseudonym), 125, 185–186,

188, 190–191, 201

Marcos (pseudonym), 67

Market

access to foreign markets, 112

Brazil’s local market, 4, 58–59, 80, 86,

123–124, 157, 169, 182, 197

IT market capitalization, 3–4, 101

labor market, 18, 86, 105, 122

needs of the local market, 119–121,

160–161, 182, 211

Marketing, 117, 174

Market reserve, 93–94, 108–111, 152,

164, 226n21

Marques, Ivan da Costa

citations, 110, 218n9, 226n24

as a participant, 93, 108, 223n1

Marshall, A., 222n22, 225n14

Marx, K., 29

Marxism, 108

Materialism (philosophy), 29

Materiality

immaterial nature of software, 2, 205,

213

material objects and resources, 2, 5, 9,

21–23, 31–33, 38, 40, 42, 57, 209

material practice, 29

Mathematicians, 95, 106, 143

Mauchly, J., 95

Mauricio (pseudonym), 52–54, 71–72,

82, 93, 126

McDonald’s, 67

McPherson, A., 225n12

Meccas, 28, 45, 79, 208, 215

Mechanical computing, 95–96, 104

Meetings, 127, 144, 169, 186–187

Megalomania, 192–194

Membership, 26–28, 35–40, 41–42,

221n20

Memory management, 140

Mentoring, 76–77, 89, 162

Metric units vs. American units, 67

Metropolitan area, 2. See also Rio de Ja-

neiro; San Francisco Bay Area

Meyer, J., 220n10

Miami, 66–67

Microcomputers, 86

Micro-controllers, 190

Microdigital Eletrônica, 109

Microelectronics, 27, 109, 111

Micro-sociology, 30, 219n4

Microsoft, 10, 53, 67–68, 88, 165, 184,

225n11, 228n18

“used by Microsoft,” 141, 150–152

Microsoft Excel, 53

Microsoft .Net, 161, 201

Microsoft Windows, 79, 101, 112

Kepler on, 195–199, 200

Microsoft Word, 79

Migration, 1, 23, 27, 32, 43–44, 64, 102,

186–187, 212, 225n13

Miguel (pseudonym), 90

Military

Brazilian army, 103, 109–110

Brazilian navy, 108–109

military computing, 95, 224n3

Minicomputers, 108–109

Ministry of Planning, 109

Ministry of Science and Technology,

14

Minority partners, 121–122, 131–132

Index 251

Miranda, Rodrigo (pseudonym). See

Rodrigo

MIT (Massachusetts Institute of Tech-

nology), 93, 97, 103–104, 140, 217n5

Mobile elements of practice, 2, 6, 22,

42, 102, 105, 130, 135, 209. See also

Disembedding.

Mobile software development, 45

Models

actors’ models of the world, 32–34, 199

business models, 9, 182

foreign models of practice, 40, 103,

161, 183, 218n9, 220n10, 230n6

open source development model (see

Free / open source software)

Model-View-Controller architecture

(MVC), 190

Modernization, 40, 104, 109–110, 115

Module. See Software components,

modules for Java

Molnár, V., 220n14

Montenegro, C., 103, 110, 203, 210, 215

Morais, F., 103, 104, 226n15

Mosaic web browser, 181

Moscow, 3, 203

Motivation

Becker’s theory of, 76, 149

for developing software, 76–78, 208,

212

intrinsic vs. extrinsic, 186, 191, 196

for learning English, 62

for participation in Lua community,

123, 162, 165

for producing free software, 123, 149

for supporting Lua, 163–166

Mountain View, 12. See also San Fran-

cisco Bay Area

Mythology, 73

Nardi, B., 218n12

Nas Nuvens (pseudonym), 15, 59–61,

63–66, 80, 159, 166–167, 182–184,

187, 191–192, 195–202, 204

National Informatics Policy, 107–109

Nations

nationalism, 39, 48–49, 108, 162–172,

229n3

national technology, 163–164,

166–167

nation-states, 31, 36, 220n10

Naturalization

of boundaries, 39

of English in software, 52–53

of interest in software, 71

knowledge as naturally fluid, 4, 7

Nerds, 18, 36, 42, 70–73, 80–83, 89, 99,

121

Netscape, 138

Networks

electronic networking, 10, 80, 82, 111,

128, 156, 226n22

local social networks, 58, 83, 122, 139,

184, 205

modeling society in terms of, 27–28,

220n13

network effects (see Networks, network

externalities)

networkers and networked, 27

network externalities, 7, 10, 43–45,

109, 222n23

network power, 44, 222n23

of practice, 26

railroad network analogy, 22–24

Newsgroups, 148

New York, 23, 28, 95–96, 225n12

Niteroi, 74, 131–132

North America, 67, 99–100. See also

Canada; United States

Nova Iguaçu, 74, 78–81

Novices, 25, 39, 45, 81, 88, 122, 221n20

Objects (programming), 50–51

Obsolescence, 109, 120, 125, 190, 153.

See also Backward compatibility

Occupations, 37–40

occupational communities, 220n12

252 Index

Occupations (cont.)

occupational culture, 37

occupational mandate, 37–40, 221n18

occupational statistics, 224n7, 224n9

Office boys, 90

Offshore outsourcing. See Outsourcing

offshore

Oil

oil extraction in Brazil, 143–144

oil prices, 108

Online vs. “real-life” interactions, 15–

16, 218n12

Open source. See Free / open source

software

Ó Riain, S., 221n19, 225n11

Orr, J., 72, 78

Outsourcing

local, 105 (see also Contracting)

offshore, 89, 169, 193 (see also India)

Palm OS, 163

Palo Alto, 1, 24. See also San Francisco

Bay Area

Paradox of globalization, 2, 4, 9, 205–206

Parochialism, 164–165, 178

Passion for software, 18, 23, 37, 73, 75,

81–82, 88–90, 223n1

Patriotism. See Nations, nationalism

Pedro (pseudonym), 63, 192–194, 200

Peers, 72, 76–78, 82–83, 85, 90, 94, 157,

176

Periphery, 1–8, 24, 41–46, 48–49, 70,78–

81, 161, 208–210, 211–215, 218n9,

220n20

asymmetry between centers and, 7,

18, 42–43, 206

and cohesion, 68, 85, 109, 204

and free / open source software, 56,

113, 176

in Lave and Wenger’s sense, 39,

221n16, 225n11 (see also Lave, J.)

peripheral actors moving to centers, 1,

3, 23, 43, 184, 225n13

Perl, 140, 172

Pessin, A., 27

Petersen, W. E. P., 223n4

Petrobras, 86–88, 118, 143, 144, 146–

148, 152, 155–157

Philadelphia, 95

Philosophy, 29–30

PHP (PHP Hypertext Preprocessor), 62,

202, 229n3

Pimenta-Bueno, J. A., 226n1

Place, 1–19, 21–24, 32–34, 40, 41–46,

73, 78, 94, 97–102, 205–215

Plano Real, 111

Pointers, 131

Polachek, H., 95

Polanyi, M., 136

Political economy, 46, 207, 208

Porto Alegre, 64, 186–187

Portuguese language. See also

Bilingualism

“Lua” as a Portuguese word, 144, 148

Portuguese keywords for Lua, 53–55,

145

Portuguese pronunciation of English

words, 65, 71

Portuguese translation of Lua’s man-

ual, 54, 159, 177

Portuguese translation of Programming

in Lua, 11, 54, 58, 177–178

use in code, 47–53, 55–56, 145

use in interviews, 13–14, 48

Poverty, 3, 90. See also Socioeconomic

class, class terms defined

Powell, W., 101, 225n14

Power

of the centers (see Centers)

and disembedding (see Disembedding)

network, 44–45, 222n23

Powerpoint, 120

Practice, 5–10, 21–46. See also Worlds of

practice

assembling elements of, 6, 22–24,

101–102, 202, 203, 206, 209, 212

Index 253

communities of, 24–27, 207, 213

cultural and economic/material sides

of, 9–10, 23, 40, 42, 83, 205–209

history of the concept, 28–29

networks of, 26

practice theory, 29–32

practice vs. knowledge, 5, 25

reproduction of, 6, 22–24, 31–33, 35,

39–40, 41–46, 208–210, 214

Primordialism, constructed, 39

Product. See Software, as a product

Professions, 38

Programmers. See Software developers

Programming. See Software

development

Programming in Lua, 11, 58, 61, 66, 70,

152, 177–178, 197, 209

Programming languages. See also names

of individual languages

and English, 50–53 (see also Lua)

Pronunciation, 65, 71

Proprietary software, 101, 113, 217n4

Protestant Ethic and the Spirit of Capital-

ism, 29

Pseudonyms, xiii

PUC-Rio (Pontifical Catholic Univer-

sity of Rio de Janeiro), 54, 63–64, 74,

83–86, 124, 150

Data Processing Center (CPD), 93, 106

Department of Informatics, 89, 106,

124, 143, 157, 177, 188

and early computing, 105–108

Lua community at PUC-Rio, 61, 118,

122, 161–164, 166–171, 177, 184,

196, 200–201

PUC-Rio’s startup incubator, 117

Punched cards, 96, 105

Puns, 54, 182

“Lua” as a pun, 54, 66, 144

“Nas Nuvens” as a pun, 182

python-brasil (mailing list), 163

Python (programming language), 137–

138, 163, 172, 194

Raymond, E., 124, 172, 175, 198, 227n5

Real (Brazil’s currency), 90, 117, 122,

183, 223n6. See also Plano Real

Rede Globo, 67, 177

Reembedding. See Disembedding, and

reembedding

Reflexivity, 6, 33, 210–211

Regulation

bankruptcy laws, 183

bureaucracy (taxes), 58

copyright law, 170, 226n24

Informatics Law of 1984, 110

labor laws, 87–88

regulators, 7

Remington Rand, 95–96, 104

Renato (pseudonym), 58, 66, 188, 190,

195, 197

Requirement analysis, 87, 126–127

Research

academic (see Academic research)

industry, 59, 160, 229n4 (see also

FINEP)

Research methods, xiii, 14, 16, 218n11,

218n12

Reserved words. See Keywords

Revolution of 1930, 103

Ricardo (pseudonym), 164–167

Rich (pseudonym), 139–140, 142, 154, 165

Rio de Janeiro (city and metropolitan

area). See also under specific topics

as a peripheral place, 1, 4, 10, 11, 12,

46, 78–79, 101

Rio de Janeiro (state), 90, 169

Rio Grande do Sul, 103

RioJug, 123–124

Risk (game), 12

Roberto. See Ierusalimschy, Roberto

Rodolfo (pseudonym), 59–60

Rodrigo (pseudonym), xiii, 15–17,

52–53, 58–61, 64–67, 80, 115–116,

118, 122–125, 132–133, 163, 166–

168, 177–178, 179–204, 208–211,

214–215

254 Index

Role-playing games (RPGs), 61–62, 82

Rua Uruguaiana, 115

Ruby, 137, 193–194

Russia, 1, 12, 68, 191, 203, 212

Russian language, 54, 64, 212

Ryle, G., 26

Salary. See Wages

Samba, 123

Sampling, 8, 12–13

Samuelson, P., 50

San Francisco, 3, 27, 42, 45, 74, 131

San Francisco Bay Area, 3–4, 12,

100–101

companies based in, 3, 44, 101,

137, 138, 225n12 (see also Adobe;

EIT; Google; Silicon Valley; Sun

Microsystems)

people moving to, 1, 3, 25, 28, 225n13

in statistics, 100–101, 217n2

users of Lua in, 137–142, 151

San Jose, 138

São Jose dos Campos, 74, 103, 203

São Paulo, 4, 74, 103, 109

SAP, 125

Sassen, S., 21

Saxenian, A., 7, 27, 225n13, 225n4

Schatzki, T., 5, 21, 30, 32

Schemas, 31–33

Schoonmaker, S., 110, 113, 226n21

Schwarz, M., 112, 217n4

Seattle Metropolitan Area, 101

Secondary education. See High school

Security, 109, 137

Senra, N., 104, 226n15

Serial cable, 72

Server, 129, 137, 152, 185, 196, 203,

205, 210

Sewell, W. H., Jr., 31, 32, 33, 36, 37,

220n7, 220n9

Shapiro, C., 44

Shaw, A., 113

Shaw, L., 217n6

Shibutani, T., 27

Silicon Valley

as a concept, 3, 4, 7, 12, 41, 78–79

San Francisco Bay Area (see San Fran-

cisco Bay Area)

Silicon Valley startup as a model, 116,

204

Silvio (pseudonym), 154–156, 162, 165–

167, 171, 178

Sinclair (computer), 74

Situated Learning, 25

Skol, 121

Smith, Adam, 29

Smith, Richard. See Smith Plan

Smith Plan, 103, 209

Soccer, 14, 72, 164

Social worlds, 27–28, 219n2, 219n3,

219n4

Socioeconomic class, class terms de-

fined, 222n7

Softnet (pseudonym), 168, 170–171

Software. See also Kepler; Lua; Software

developers; Software development

applications, 54, 78–80 (see names of

individual applications and under Web)

free / open source (see Free / open

source software)

installation, 71, 129–131, 195–196,

203

licensing (see Free / open source

software)

as a product, 80, 97, 117, 120, 160,

182–184

as a service, 97, 112, 117–120, 160,

184 (see also Outsourcing)

software architects, 125, 197, 217n2

software repositories, 3, 17, 192, 213

as text, 2, 50–55, 214

Software components

frameworks, 44, 128–130,166, 178,

193–194

libraries, 118

modules for Java, 44, 50, 118

Index 255

modules for Lua and Kepler, 97, 118,

138, 185–186, 198, 200–201, 203

platforms, 101 (see also Kepler)

Software developers

becoming a software developer, 71–91,

111

as a community, 26, 34–41

as having different brains, 39, 72

as “professionals,” 82–83, 120, 122

in statistics, 4, 97–101, 217n2

terms for, 27, 36, 217n1

Software development

as combining fun and income, 113,

188, 208

as a commercial activity (see Alta; Nas

Nuvens)

as “cool,” 14, 76–78, 125, 207

as discovery, 77–78

as a hobby, 90, 113, 146–147, 154, 200

as interesting or fun, 37, 93, 122–123,

133, 207, 213, 223n3

as a job, 37, 81–90, 120–123

as localized, 2–4, 97–102

not being a profession, 38

as solitary work, 16, 77–78, 82, 208

as a “world,” 5 (see also Worlds of

practice)

SOL (programming language), 54–55,

142, 144–145, 227n4

Source code. See Code

SourceForge, 185

South America, 100, 106, 170–173

Soviet Union, 66

Spanish language, 56, 66, 67

Spillover effects, 159

Spinardi, G., 136

Staa, A. von, 106, 107, 108, 226n15

Standards

remote standards of practice, 41, 54,

80, 116, 119–120, 155, 208, 212

technical, 151, 159, 22, 226n22

Stanford University, 139

Startups

Alta as a startup, 116, 117, 128, 132

in California, 137–138, 183

Nas Nuvens as a startup, 166, 182–183

Steve (pseudonym), 138, 140–141,

149–150, 152

Strauss, A., 13, 27, 28, 219n2, 219n3,

219n4

Structuration, 30–34

Structure, social, 30–34, 46, 73, 211,

219n4

Struts, 130–131

sudo, 131

Sun Microsystems, 15, 51, 137, 155

Supercomputers, 151–152

Sweden, 80

Symbolic capital, 41

Symbolic power, 69, 208

Symbolic tokens, 131, 141

Syntax (in programming language),

140, 163

System integration, 117–119

Systems analysts, 73

Taboos, 176

Tabulators, 96, 104

Tacit knowledge, 136

Taiwan, 27

Takhteyev, Y., 112, 217n4, 223n10,

223n2, 224n7, 224n8, 224n9,

225n10, 225n12

Tecgraf, 54, 122, 143–157, 162, 227n3

Teenagers, 3, 75–76, 79, 83, 90

Telephony, 16, 43, 80

Theory

in Aristotle, 29

practice theory, 29–32 (see also

Practice)

of structuration (see Structuration)

Tiago (pseudonym), 125, 186–188, 190,

195–196, 200, 203–204

Tigre, P., 105

TIOBE TPCI, 173, 227n1

TK85, 74

256 Index

Torvalds, L., 223n3, 225n13

Transatlantic relations, 94–95

Transistors, 105

Translation

Portuguese translation of Programming

in Lua, 11, 54, 58, 177–178

of quotations, xiii, 48, 120, 163, 166,

182

software, 53,

translated English books, 43, 62, 67

Traweek, S., 27

Trust, 7, 35, 85–86, 102, 141, 176

Tuition, 63, 84

Turner, F., 217n5

Ubuntu Linux, 131, 203

UFRJ (Federal University of Rio de Ja-

neiro), 14, 93, 108, 115, 181

UML editor, 127

Unisys Corporation, 95

United Kingdom, 68, 70, 94, 143, 152

United States. See also under specific

topics

American users of Lua, 137–142, 151

resentment toward, 67–68, 70

UNIVAC

early UNIVACs, 95–96

UNIVAC 1105 and IBGE, 104–106, 209

Universities. See Higher education

University of Pennsylvania, 95

Unix, 195–196

Unruh, D., 219n2

URL, 60, 126

Uruguay, 200

US Census Bureau, 104

Vacuum tubes, 95, 105

Van Maanen, J., 11, 16, 220n12, 221n17

Vaporware, 148

Vargas, G., 103

Variables names, 50–51, 52, 144–146,

193, 227n4

VAX (computer architecture), 151

Verizon, 10

VHS (Video Home System), 44

Virtuality, 17, 59, 194, 204, 213, 218n12

Virtual machine (VM), 137, 163, 227n8

Visas, 1

Visual Basic, 53

Vizcaino v Microsoft Corp., 88

Vladivostok, 1, 12

Volapük, 209

Vygotsky, L., 30

Wages, 85–88, 89–90, 122, 185, 192–

193, 223n6

Wallerstein, E., 221n20

War (game), 12

Washington, D.C., 95, 102

Water cooler conversations, 15

Waterloo, University of, 106, 143, 157

Web. See also Documentation, availabil-

ity over the Internet; Internet; Lua,

lua.org web site; LuaForge

Kepler’s web site, 16, 59, 184

web applications in Java, 15, 17, 47,

120, 133,

web applications in Lua, 16, 60, 181,

185–186, 199, 230n7

web browser, 142, 156, 181

web development platform (see

Kepler)

web hosting, 100, 152, 196

web server, 129, 137, 185, 203

Weber, E. T., 226n1

Weber, M., 29

Weiss, R. S., 217n6

Wellman, B., 180

Wenger, E., 25, 39, 88, 214, 219n1,

220n16, 221n20

Wikipedia, 66

Wikis, 16

Takhteyev’s wiki software, 16, 59–60,

177, 196, 199, 202

wikis in general, 152, 189, 195, 204,

230n7

Index 257

Willis, P., 72, 221n17

Willmott, H., 219n1

Windows. See Microsoft Windows

Witchcraft, 194

Wittgenstein, L., 30, 220n7

Woolgar, S., 218n11

WordPerfect, 79

Wordplay. See Puns

WordStar, 78–79

Work. See also Labor; Software

development

“knowledge work,” 2, 7, 27

sociology of, 37–38, 220n17

World

“flattening,” 1, 9, 21, 208

world domination, 179–180, 185, 190,

194

World of software. See also Worlds of

practice

World of Warcraft, 10, 135, 139, 218n12

Worlds of practice, 2, 5, 21–46, 110, 208

and boundaries, 34–41 (see also

Boundaries)

and imagination, 32–43 (see also

Imagination)

as named collectives, 5, 27, 36

and peripherality, 22–24, 32–34, 40,

41–46

and social worlds, 27–28 (see also So-

cial worlds)

in a system of practices, 24, 37, 94,

105, 210

as systems of activity, 2, 5, 21–23, 102

World War II, 53, 95, 103

Xerox PARC, 24

Z3 (computer), 95

Zé Luis (pseudonym). See Jason

Zezinho (computer), 104

Zona Norte, 74

Zona Sul, 80

Zook, M. A., 101

